Читаем Кантор. Бесконечность в математике. полностью

В 1890-е годы Кантор, выздоровевший и примирившийся с научным сообществом, возобновил свои математические исследования. Их результатом стала публикация двух статей — последних, которые он отправил в печать при жизни. Первая называлась Über eine elementare Frage der Mannigfaltigkeitslehre («Об одном элементарном вопросе учения о многообразиях») и была опубликована в 1892 году в первом ежегодном альманахе Немецкого математического общества.

Вторая статья стала одной из самых известных и была издана в двух частях: первая в 1895-м, а вторая в 1897 году. Обе вышли в журнале «Математические анналы» под заголовком Beiträge zur Begründung der transfiniten Mengenlehre («К обоснованию учения о трансфинитных множествах»).

В диаметре Алеф имел два-три сантиметра, но было в нем все пространство Вселенной, причем ничуть не уменьшенное.

Из рассказа «Алеф» Хорхе Луиса Борхеса

Проанализируем содержание этих статей, но в обратном хронологическом порядке.

Историк Хосе Феррейрос совершенно справедливо утверждает, что теория трансфинитных множеств — это «научное завещание Кантора». Действительно, в этой работе ученый использует все основные понятия своей теории бесконечности, в частности кардинальных и ординальных чисел, и изучает их свойства и взаимоотношения.

Одним из нововведений стало обозначение бесконечных кардинальных чисел (мощностей) алефом, א. Это первая буква еврейского алфавита. Первое бесконечное кардинальное число, соответствующее множеству натуральных чисел, как любое другое счетное множество, Кантор назвал X0 (читается «алеф-нуль»);

(далее в тексте алеф заменяется на X)

X1— второе бесконечное кардинальное число, X2 — третье и так далее. Следовательно, множество всех ординальных чисел первого класса, то есть всех натуральных чисел, имеет мощность X0 .  Добавив ординалы второго класса, мы получим мощность X1, третьего класса — множество с мощностью X2 и так далее (см. рисунок). После этого замечания вопрос о том, верна ли континуум-гипотеза, то есть верно ли предположение Кантора, что промежуточной мощности между мощностью натуральных и вещественных чисел не существует, видоизменяется: равна ли мощность вещественных чисел X1? (Обратим внимание, что меньшая бесконечная мощность — это X0, а непосредственно за ней идет X1 ; мы также знаем, что мощность вещественных чисел не равна X0 потому что они несчетны; поэтому, если она не равна X1, единственная альтернатива — что она больше этого значения.)

Каждый раз, добавляя целый следующий класс ординальных чисел, мы непосредственно переходим к следующему кардинальному числу.

СКОЛЬКО ВСЕГО АЛЕФОВ?

Последовательность алефов начинается с X2 ,X1 ,X0,,... Но сколько их всего? Каждому натуральному числу соответствует один алеф и, следовательно, они счетные? На самом деле нижние индексы — ординальные числа. После бесконечного числа Xn, где n — все натуральные числа, идут  Xω+1, Xω+1, ..., Xω+ω, Xω+ω+1,... и так далее. Значит, ответ на вопрос таков: бесконечных кардинальных чисел столько же, сколько ординальных (всех классов).

ТРАНСФИНИТНАЯ АРИФМЕТИКА

В своем «Обосновании» Кантор опирается на работу Дедекинда 1887 года, хотя и не ссылается на нее открыто. Как и Дедекинд, он считает, что натуральные числа — кардиналы конечных множеств, а их сумма получается посредством объединения. Однако Кантор распространил эту идею и на бесконечные кардинальные числа и открыл область, которую назвал трансфинитной арифметикой. С точки зрения теории множеств 1 + 1 = 2 означает, что если мы объединим два разных множества с мощностью каждого, равной 1, то получим множество с мощностью 2. Можно выразить это другим способом, сказав, что если к множеству с мощностью 1 мы прибавим еще один объект, то результатом будет множество с мощностью 2. Следуя логике этих рассуждений, если к натуральным числам (с мощностью X0 ) прибавить число -1, мы получим множество -1, 0, 1, 2, 3, 4,..., эквивалентное множеству натуральных чисел и, следовательно, имеющее мощность X0 (напомним, что два эквивалентных множества равномощны). Итак, прибавляя новый объект к множеству мощностью X0 , мы получим другое множество с мощностью X0 ; говоря языком трансфинитной арифметики, X0 + 1 = X0 (см. рисунок 3).

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука