Читаем Как же называется эта книга? полностью

У одного логика хранится «Книга высказываний». Страницы книги перенумерованы последовательными натуральными числами, и на каждой странице записано ровно одно высказывание. Ни одно высказывание не занимает более одной страницы. Номер страницы, на которой записано высказывание X, назовем номером высказывания X. Разумеется, каждое высказывание, внесенное в «Книгу высказываний», либо истинно, либо ложно. Некоторые из истинных высказываний настолько очевидны логику, у которого хранится книга, что он принял их за аксиомы своей логической системы. Помимо аксиом в эту систему входят правила вывода, позволяющие доказывать истинные высказывания, сводя их к ранее доказанным истинным высказываниям и аксиомам, и опровергать ложные высказывания. Логик совершенно уверен в своей непротиворечивости (то есть в том, что всякое высказывание, доказуемое в его системе, действительно истинно, а каждое высказывание, опровергаемое в его системе, действительно ложно), но сомневается в ее полноте (то есть в том, что в системе все истинные высказывания доказуемы, а все ложные опровержимы). Все ли истинные высказывания доказуемы в его системе? Все ли ложные высказывания опровержимы в его системе? На эти вопросы логик хотел бы получить ответ.

У нашего логика помимо «Книги высказываний» есть еще «Книга множеств». Ее страницы также перенумерованы последовательными натуральными числами, и на каждой странице приведено описание некоторого множества чисел. (Под числами мы понимаем здесь целые положительные, или натуральные, числа 1, 2,…, n,…) Любое множество, внесенное в «Книгу множеств», мы будем называть учтенным множеством. Если задано натуральное число n то может случиться, что множество, записанное на n-й странице «Книги множеств», содержит число n. В этом случае мы будем называть n экстраординарным числом.

Кроме того, назовем число h сопряженным с числом n, если в высказывании, записанном на n-й (Не уверен, но, IMHO, тут должно стоять …на h-й — SStas) странице «Книги высказываний», утверждается, что n — экстраординарное число.

Известно, что выполняются следующие четыре условия:

E1: Множество номеров всех доказуемых высказываний — учтенное множество.

E2: Множество номеров всех опровержимых высказываний — учтенное множество.

C: Для любого учтенного множества A множество ~A, состоящее из всех чисел, которые не принадлежат множеству A, — учтенное множество.

H: Для любого учтенного множества A существует другое учтенное множество B, такое, что каждое число из B имеет сопряженное, принадлежащее A, и каждое число, не принадлежащее B, имеет сопряженное, не принадлежащее A.

Этих четырех условий достаточно, чтобы ответить на вопросы логика: «Каждое ли истинное высказывание доказуемо в его системе? Каждое ли ложное высказывание опровержимо в его системе?» Кроме того, можно определить, является ли множество номеров всех истинных высказываний учтенным множеством, а также является ли учтенным множеством множество номеров всех ложных высказываний. Как это сделать?

Решение. Перед вами не что иное, как гёделев остров из раздела А, но в ином «одеянии». Номера истинных высказываний играют роль рыцарей, номерам ложных высказываний отведена роль лжецов, доказуемые высказывания соответствуют признанным рыцарям, опровержимые — отъявленным лжецам. Учтенные роли заменяют собой клубы. Понятие множества, записанного на странице с заданным номером, играет роль клуба, названного по имени одного из обитателей острова. Экстраординарные числа — это не что иное, как номинабельные члены общины, а сопряженные числа являются аналогами друзей.

Чтобы решить задачу, прежде всего необходимо доказать аналог условия G.

Условие G. Для любого учтенного множества A найдется высказывание, истинное в том и только в том случае, если его номер принадлежит A.

Чтобы доказать условие G, выберем любое учтенное множество A. Пусть B — множество, заданное условием H, n — номер страницы, на котором записано B в «Книге множеств». По условию H если число n принадлежит B, то у него имеется сопряженное число h, принадлежащее множеству A, а если n не принадлежит B то у него есть сопряженное число h, не принадлежащее A. Мы утверждаем, что высказывание X на h-й странице и есть то самое высказывание, которое требуется найти.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Агрессия
Агрессия

Конрад Лоренц (1903-1989) — выдающийся австрийский учёный, лауреат Нобелевской премии, один из основоположников этологии, науки о поведении животных.В данной книге автор прослеживает очень интересные аналогии в поведении различных видов позвоночных и вида Homo sapiens, именно поэтому книга публикуется в серии «Библиотека зарубежной психологии».Утверждая, что агрессивность является врождённым, инстинктивно обусловленным свойством всех высших животных — и доказывая это на множестве убедительных примеров, — автор подводит к выводу;«Есть веские основания считать внутривидовую агрессию наиболее серьёзной опасностью, какая грозит человечеству в современных условиях культурноисторического и технического развития.»На русском языке публиковались книги К. Лоренца: «Кольцо царя Соломона», «Человек находит друга», «Год серого гуся».

Вячеслав Владимирович Шалыгин , Конрад Захариас Лоренц , Конрад Лоренц , Маргарита Епатко

Фантастика / Самиздат, сетевая литература / Научная литература / Ужасы и мистика / Прочая научная литература / Образование и наука / Ужасы
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука