Читаем Как же называется эта книга? полностью

Решение. Докажем сначала утверждение (б). Предположим, что все рыцари состоят членами одного клуба и все лжецы состоят членами одного клуба. Тогда найдутся островитяне A, B, о которых известно следующее: A утверждает, что B — лжец, а B утверждает, что A — рыцарь. Но это, как мы уже знаем, невозможно (см. предыдущую задачу или задачу 259 в предыдущей главе). Итак, невозможно, чтобы все рыцари состояли членами одного клуба и все лжецы также состояли членами одного клуба. Значит, либо все рыцари не состоят членами одного клуба, либо все лжецы не состоят членами одного клуба. Если все рыцари не состоят членами одного клуба, то непременно найдется по крайней мере один не признанный рыцарь (поскольку все признанные рыцари состоят членами одного клуба). Если все лжецы не состоят членами одного клуба, то непременно найдется по крайней мере один не отъявленный лжец. Но какой именно случай представится на острове, мы не знаем. Итак, утверждение (а) доказано.

Альтернативное (и более интересное) доказательство того, что непременно найдется не признанный рыцарь или не отъявленный лжец, состоит в следующем. Так как признанные рыцари состоят в одном клубе и отъявленные лжецы состоят в одном клубе, то найдутся островитяне A, B, высказывающие следующие утверждения:

A: B — отъявленный лжец.

B: A — признанный рыцарь.

Предположим, что A — рыцарь. Тогда его утверждение истинно. Значит, B — отъявленный лжец, поэтому его утверждение ложно. Следовательно, A — не признанный рыцарь. Значит, A — не признанный рыцарь. Если же A — лжец, то высказанное B утверждение ложно, поэтому B — лжец. Высказанное A утверждение также ложно, поэтому B — не отъявленный лжец. Следовательно, B — не отъявленный лжец.

Итак, либо A — не признанный рыцарь, либо B — не отъявленный лжец (но мы опять не знаем, какая из двух альтернатив истинна).

Эта задача очень напоминает одну из задач о парах шкатулок (задачу 136 из гл. 9), в которой одна из двух шкатулок (какая именно — неизвестно) изготовлена либо Беллини, либо Челлини (но кем именно — опять-таки неизвестно).

<p>268. Несколько нерешенных задач</p>

Я придумал несколько задач о гёделевых и дважды гёделевых островах, но решить их так и не собрался. Думаю, что читателю будет приятно испробовать свои силы на работе, сулящей неожиданности и, быть может, даже открытия.

268 а.

Я уже говорил о том, что, насколько мне известно, ни одно из условий G, CG не следует из другого. Удастся ли вам доказать (или опровергнуть, что я считаю маловероятным) мою гипотезу? Для этого вам необходимо «построить» остров, для которого выполняется условие G, но не выполняется условие CG, а также остров, для которого выполняется условие CG, но не выполняется условие G. Построить остров означает в данном случае указать, кем он населен, кто из его обитателей рыцари и кто лжецы, какие обитатели состоят и какие не состоят членами одного клуба. (Кто из рыцарей обладает правом называться признанным рыцарем и кого из лжецов следует называть отъявленными лжецами, для решения этой задачи значения не имеет.)

268 б.

Можете ли вы доказать (или опровергнуть) мою гипотезу о том, что на острове S1 не обязательно должны быть не признанные рыцари и не отъявленные лжецы (хотя непременно должны быть рыцари и лжецы)? Иначе говоря, можете ли вы построить остров, удовлетворяющий условиям E1, E2 и CG, на котором есть рыцари, но нет не признанных рыцарей? Можете ли вы построить остров, на котором есть лжецы, но нет не отъявленных лжецов? (На этот раз при построении островов необходимо указать не только, кто из его обитателей называется рыцарем или лжецом и состоит в том или ином клубе, но и указать, каких рыцарей следует считать признанными и каких лжецов — отъявленными.)

268 в.

Предположим, что все острова, о которых говорится в предыдущих задачах, допускают построение (интуитивно я убежден в том, что построить эти острова можно, хотя и не могу этого доказать). Какова минимальная численность населения каждого острова? Можете ли вы доказать, что при меньшей численности населения какое-то из условий будет нарушено?

<p>В. Теорема Гёделя</p><p>269. Полна ли эта система?</p>
Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Агрессия
Агрессия

Конрад Лоренц (1903-1989) — выдающийся австрийский учёный, лауреат Нобелевской премии, один из основоположников этологии, науки о поведении животных.В данной книге автор прослеживает очень интересные аналогии в поведении различных видов позвоночных и вида Homo sapiens, именно поэтому книга публикуется в серии «Библиотека зарубежной психологии».Утверждая, что агрессивность является врождённым, инстинктивно обусловленным свойством всех высших животных — и доказывая это на множестве убедительных примеров, — автор подводит к выводу;«Есть веские основания считать внутривидовую агрессию наиболее серьёзной опасностью, какая грозит человечеству в современных условиях культурноисторического и технического развития.»На русском языке публиковались книги К. Лоренца: «Кольцо царя Соломона», «Человек находит друга», «Год серого гуся».

Вячеслав Владимирович Шалыгин , Конрад Захариас Лоренц , Конрад Лоренц , Маргарита Епатко

Фантастика / Самиздат, сетевая литература / Научная литература / Ужасы и мистика / Прочая научная литература / Образование и наука / Ужасы
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука