Если же речь идет о вимпах, способных испытывать слабое взаимодействие, то можно попытаться наблюдать эти реакции в лаборатории. Определить параметры вимпов в таком прямом эксперименте было бы наиболее надежным способом. В случае, если никаких реакций не будет обнаружено, это позволит установить верхний порог сечения слабого взаимодействия вимпов. Ситуация в чем-то похожа на ту, с которой имели дело специалисты по элементарным частицам, когда пытались обнаружить в экспериментах воздействия нейтрино, приходящих из космоса, например образующиеся при термоядерных реакциях на Солнце. Для того чтобы на эксперимент не влияли космические лучи, имеющие меньшую проникающую способность, чем нейтрино, эксперименты проводили под землей в шахтах или туннелях, нередко под горными массивами.
Сейчас многие из этих лабораторий ведут также поиски вимпов. Основная идея заключается в том, что вимпы каким-то образом взаимодействуют с веществом детектора, и результаты этой реакции регистрируются одним из многочисленных способов, перечисленных в обзоре (Cline, 2014). При этом если в случае нейтрино были точно известны ожидаемые реакции, то в случае вимпов можно ожидать все что угодно. Естественно, что реакции, вызываемые нейтрино, не подходят для поиска вимпов. Вообще, обнаружить в этих экспериментах неизвестную реакцию намного проще, чем доказать, что она связана именно с вимпом. Единственное убедительное доказательство в данном случае – это столь любимое математиками доказательство «от противного», т. е. нужно зафиксировать такую реакцию, которая не может быть вызвана ни одной известной частицей или ядром. Таким образом, перефразируя Конфуция, можно сказать, что трудно искать темную материю в темной комнате, особенно если не знать, можно ли ее, в принципе, обнаружить.
Дополнительная трудность при поиске вимпов связана с тем, что практически невозможно полностью избавиться от радиоактивного фона. Основными помехами являются β- и γ-распад, которые достаточно легко отделить по электромагнитному взаимодействию, а также потоки нейтронов, особенно неприятные тем, что по воздействию на детектор их трудно отличить от вимпов. К счастью, сечение рассеяния нейтронов существенно больше, чем у вимпов, поэтому считается, что в достаточно больших детекторах они рассеиваются более одного раза. Естественно, обе эти помехи также можно уменьшить путем экранирования детектора и использования материалов, очищенных от радиоактивных примесей.
Считается, что вимпы происходят из темного гало нашей Галактики и их средняя скорость в системе отсчета центра Галактики равна нулю. Как известно, Солнце движется относительно центра Галактики со скоростью около 220 км/с, а Земля вращается вокруг Солнца со скоростью около 50 км/с. Эти скорости складываются в июне и вычитаются в декабре, из-за чего относительная скорость движения Земли относительно темного гало имеет сезонные вариации. Очевидно, что поток вимпов должен иметь такие же сезонные вариации. Это происходит точно по той же причине, по которой человек, бегущий под дождем, промокнет за одинаковый промежуток времени сильнее, чем стоящий неподвижно. Наличие подобных сезонных вариаций в зафиксированном сигнале считается хорошим аргументом в пользу того, что зарегистрированы именно вимпы. Кроме того, в силу аналогичных причин должны присутствовать и суточные вариации потока вимпов, но ни один существующий на сегодняшний день детектор не способен их зафиксировать.
На практике используют следующий принцип детектирования вимпов. Предполагается, что вимп упруго рассеивается на ядре материала детектора, передав ему часть энергии. Именно такие внезапно ускоренные ядра и пытаются обнаружить в ходе экспериментов. Энергия ускоренных вимпами ядер оценивается в диапазоне 10–100 кэВ, причем количество событий экспоненциально падает с ростом энергии. Поэтому для повышения вероятности обнаружения вимпов нужны низкий порог обнаружения (что требует хорошего подавления фона), большая масса детектора и длительное время наблюдений. Ускоренные ядра регистрируют различными способами: по сцинтилляциям, ионизации, появлению фононов (колебаний кристаллической решетки), образованию пузырьков в перегретой жидкости и др. Основными типами используемых детекторов являются криогенные кристаллические детекторы, сцинтилляционные детекторы, пузырьковые камеры и детекторы на основе сжиженных благородных газов. Приведем описание некоторых детекторов и затем краткий обзор полученных результатов.
Криогенные кристаллические детекторы представляют собой сборки из полупроводниковых кристаллов, охлажденные до сверхнизких температур. В этих детекторах измеряются электрический заряд и фононы (в виде тепловыделения). Это позволяет достичь хорошего подавления радиоактивного фона. Наиболее известным криогенным кристаллическим детектором является установка CDMS II, расположенная в Суданских горах (США) и работающая с 2006 г. Она содержит 30 детекторов, включает в сумме 4,75 кг германия и 1,1 кг кремния, охлажденных до температуры 50 мК.