Итак, астрономических наблюдений, подтверждающих существование темной материи, достаточно много. Но можно ли их объяснить каким-то иным образом без привлечения идей темной материи? Для многих это действительно так, хотя и не для всех. Темная материя необходима для роста крупномасштабной структуры Вселенной. Но для того, чтобы объяснить наблюдения, не привлекая темную материю, приходится жертвовать более фундаментальными вещами. Например, существует гипотеза, объясняющая кривые вращения галактик тем, что при малых значениях ускорения нарушается второй закон Ньютона. Эта так называемая модифицированная ньютоновская динамика (MOND) имеет небольшое число сторонников, хотя и очень активных. Подумаем, к каким последствиям приведет такая гипотеза. Для начала надо отказаться от классической механики и заменить ее на какую-то пока не разработанную теорию. Соответственно, рушится фундамент всей физики. Слабые ускорения могут быть связаны с взаимодействиями в рамках молекулярной физики, физики твердого тела, физики элементарных частиц и во многих других областях. Все эти науки придется перестроить без каких-либо на то экспериментальных оснований только для того, чтобы объяснить кривые вращения галактик. При этом остальные доказательства существования темной материи не могут быть объяснены в рамках MOND. Для них придется придумать какие-то другие гипотезы. Гипотеза же о темной материи хороша тем, что объясняет единым образом много различных экспериментов. Другой идеи, подходящей для всех случаев, пока не существует.
Глава 5
Темная энергия
5.1. Космологические свидетельства существования темной материи и темной энергии
Перейдем от масштабов галактик, т. е. астрономических, к масштабам космологическим. Это позволяет решить несколько задач. Во-первых, получить независимые оценки Ωm – плотности материи, выраженной в процентах от критической плотности. Во-вторых, разделить вклады темной и барионной материй. Для этого вводится аналогичный параметр Ωb – отношение плотности барионной материи к критической. Понятно, что плотность небарионной темной материи в процентах от критической плотности будет равна Ωm – Ωb. В-третьих, кроме этого, естественно получаются оценки параметра ΩΛ – отношения плотности энергии, связанной с космологической постоянной, к критической плотности энергии. В настоящее время космологическая постоянная рассматривается как один из частных случаев темной энергии, о которой мы расскажем ниже.
Еще до открытия реликтового излучения космологи мечтали о двух типах космических объектов, которые позволили бы им разобраться с геометрией пространства-времени, в частности определить знак кривизны Вселенной. Первый тип объектов получил жаргонное название «стандартная свеча». Это объекты, которые обладают одинаковой светимостью, но при этом находятся на очень разных расстояниях от Земли. Второй тип объектов называется стандартной линейкой и имеет одинаковые линейные размеры. Зачем эти объекты были так нужны? Дело в том, что в искривленном пространстве, как мы уже упоминали в разделе 2.5, понятие расстояния становится неоднозначным. Вводятся несколько видов расстояний, которые связаны друг с другом через кривизну пространства.
Имея стандартную свечу, мы можем ввести так называемое фотометрическое расстояние. По определению, это расстояние, на которое нужно в плоском пространстве отнести источник света, чтобы получить наблюдаемый поток света. Его отличие от обычного расстояния связано с двумя факторами. Первый из них связан с тем, что освещенность поверхности обратно пропорциональна квадрату расстояния до точечного источника света. Это справедливо только для плоского пространства. В пространстве с положительной кривизной поверхность сферы радиуса r меньше чем 4πr2. Соответственно, освещенность будет падать медленнее, чем r–2. Понятно, что в пространстве с положительной кривизной, где поток больше, чем в плоском пространстве, благодаря только первому фактору, фотометрическое расстояние будет меньше, чем в плоском. Соответственно, в пространстве отрицательной кривизны, где площадь поверхности сферы больше чем 4πr2, фотометрическое расстояние было бы больше, чем в плоском пространстве при одинаковых потоках.
Второй фактор связан с тем, что свет от удаленных источников был излучен в более ранней Вселенной и за время распространения длина его волны увеличилась в 1 + z раз. Соответственно, энергия фотонов, пропорциональная частоте, уменьшилась в 1 + z раз. Кроме того, в 1 + z раз увеличилось время между приходами фотонов. В результате в формуле для потока света, наблюдаемого на Земле, возникает множитель (1 + z)–2, что увеличивает фотометрическое расстояние в 1 + z раз.