Отметим интересную деталь. Число изображений в гравитационной линзе всегда должно быть четное. В обычных же оптически неоднородных средах число изображений всегда нечетное. Так, например, известен мираж тройного солнца, при котором на небе видны три изображения Солнца. Крайне редко встречается вариант, когда изображений пять. При этом число прямых изображений всегда на одно больше, чем обратных, т. е. зеркально отраженных.
Если бы линзирующий объект был сферически симметричен и точно располагался между источником и наблюдателем, мы вместо конечного числа изображений далекого объекта наблюдали бы кольцо, окружающее истинное положение объекта. Такое кольцо называется кольцом Эйнштейна, оно дает изображение в виде почти замкнутой круговой дуги или, гораздо реже, полного круга. Такая ситуация возникает, когда линзированный объект очень компактен. Но, поскольку в природе не встречается идеально сферически симметричных объектов, очень тонкое кольцо Эйнштейна от небольшого объекта вряд ли когда-либо удастся увидеть. Вместо него мы видим конечное четное число изображений.
Отдельно рассматривается случай так называемого микролинзирования, вызываемого не только более близкой галактикой, но и конкретными звездами этой галактики. В этом случае угол отклонения настолько мал, что отдельные изображения нельзя разделить. Микролинзирование проявляется в виде временного повышения яркости далекого объекта, иногда довольно существенного. В этом случае аналогия с линзой особенно удачна. Некоторые специалисты по микролинзированию утверждают, что по кривым блеска во время микролинзирования в отдельных случаях можно предполагать наличие у звезды-линзы массивных планет.
С точки зрения поиска темной материи больший интерес представляет так называемое слабое линзирование. В случае любого линзирования в результате прохождения света от далеких объектов через гравитационное поле их изображение не только смещается и изменяет яркость, но и деформируется. При слабом линзировании возникает одно изображение далекого объекта, но вытянутое в направлении, перпендикулярном по отношению к центру линзирующего объекта. В частности, если линзирующий объект достаточно компактный (например, галактика), то изображения более далеких объектов образуют дуги с центром в этой галактике. Эти дуги близки к участкам кольца Эйнштейна.
Если же линзирующий объект расположен достаточно далеко от луча зрения, дуги обнаружить не удается. В этом случае путем статистической обработки определяется преимущественное направление, в котором вытянуты наблюдаемые объекты и по которому определяется направление на линзирующий объект, а по степени деформации – его масса. Строго говоря, речь идет не о массе отдельной галактики, а об интегральной плотности материи вдоль луча зрения. Именно с помощью этого метода на рис. 4.5 были проведены линии постоянной плотности, называемые изоденсами.
Основное достоинство слабого линзирования состоит в том, что, в отличие от сильного линзирования, оно происходит всегда. При рассмотрении слабого гравитационного линзирования с z-фактором больше 0,1 уже необходимо принимать во внимание космологические эффекты. Поэтому по данным слабого гравитационного линзирования можно получить ограничения на значения космологических параметров. Таким образом, слабое гравитационное линзирование служит своеобразным мостом между исследованиями темной материи на масштабах галактик и скоплений и на космологических масштабах.
4.3. Из чего состоит темная материя?
Теперь можно перейти к естественно возникающему вопросу о том, что из себя представляет небарионная темная материя. Существует экстравагантная гипотеза о том, что в качестве темной материи может выступать большое количество черных дыр небольших масс, которые проявляют себя только гравитационно. Эта гипотеза не получила сколь-либо широкого распространения, и мы упоминаем о ней только потому, что это – практически единственный вариант, когда темная материя состоит из макроскопических объектов. Во всех остальных случаях считается, что она должна состоять из каких-то массивных частиц. Поскольку она не может состоять из барионов, а все остальные более массивные известные элементарные частицы нестабильны, речь может идти только о неоткрытых до сих пор частицах.