Читаем Как понять ребенка полностью

Второе - опять неумение оценить последовательность по достаточному количеству параметров. Те дети, которые на числовой последовательности отмечали только увеличение (один параметр), на этой последовательности демонстрировали единственное понимание, что все это «жилище». А вот продолжить эту последовательность с учетом расширения объема понятий без подсказки они не догадывались.

Этот один из многих ученических вариантов продолжения, на наш взгляд, правильный. Были и очень длинные варианты, оканчивающиеся Вселенной. Те, кто не заметили, что квартира больше комнаты, дом - больше квартиры, после дома, например, могли написать сразу город, а после города, например, шалаш, вигвам, юрта, а потом - село.

Вам показался случайным такой ответ Вашего ребенка? Придумайте тогда другие словесные последовательности с аналогичными характеристиками. Если и на других примерах словесных последователъностей это подтвердится, смиритесь и радуйтесь: Вам удалось такими простыми средствами зафиксировать такие фундаментальные характеристики мыслительного процесса.

А раз зафиксировали, то вот Вами средство: решайте задачи по культуре мышления обязательно всех типов, дабы помочь преодолеть трудности прямыми (буквенные задачи) и косвенными методами (остальные 6 типов задач). Вам ведь нужны гарантии, невозможные без комплексных методов (все 7 типов).

5.5. Четвертый тип задач. Абстрактные последовательности

Можно предложить еще и другие названия: задачи на сравнение или последовательности отношении. Итак, в первом квадрате пишем - абстрактное неравенство, например: Иа больше Ио, во втором - Ие меньше Ио. Третий квадрат для ответа на вопрос: «Кто больше всех?» Четвертый - Кто меньше всех?» А пятый - «Кто средний?»

Таких задач можно придумать бесчисленное множество, меняя каждый раз абстрактные имена (Иа, Ио, Ие) или вид неравенства. Можно также увеличивать количество неравенств и имен. Для поддержания интереса стараюсь «расцвечивать» имена: Хи-Хи, Ха-ха, Хо-хо, Гы-гы и так далее.

Наблюдение первое. При смене имен часто не обращают внимания на идентичность задач. Например, в предыдущей задаче вместо Иа поставим Ха-ха, вместо Ио - Хи-хи, а вместо Ие - Хо-хо.

Вам видно сходство, а ему - нет. Потому что количество параметров, за которым он в состоянии уследить при определении сходства, недостаточно для решения этой задачи.

Наблюдение второе. Их удивляет разнообразие имен, ибо сами они не владеют принципами, необходимыми для их придумывания. Для специалиста хочется сказать больше: принципами порождения нового, операцией присвоения имени. Я удивлялся такому удивлению, задумываясь над их стандартным вопросом:

- А Вы сами придумываете такие имена? А задачи?.. А где Вы такие имена берете?

В конце года некоторые переступили через этот барьер, но не все и не сразу. Об этом можно было судить по задачам, которые они придумывали.

Наблюдение третье. Можно сказать: удивление третье. Получив задачу, спрашивают:

- Кто такой Иа?

Поскольку я смеюсь в ответ или пожимаю плечами, говоря: «Не знаю», - спрашивать перестают, но, судя по неверным ответам, вопрос этот продолжает кое-кого интересовать. Значит, каждый раз эти ребята пытаются решить такую задачу не как учебную, а как конкретную, и поэтому для облегчения решения придумывают, по-видимому, фактических существ с такими именами.

Наблюдение четвертое. Не все могут решить эту задачу. Тем более не все воспринимают объяснение этой задачи в большом коллективе. Этот тип задач требует индивидуальной проработки с учителем и поиск индивидуального метода объяснения, что может потребовать упрощения до такой задачи.

И такая задача может оказаться не по плечу. А если так, то с нее и надо начинать. Таким детям еще до школы наверняка была непонятна другая, более конкретная задача:

- Комар больше слона. Кто больше?

Ответ традиционный: «Слон», потому что пока ребенок не в состоянии отрешиться от реальных жизненных отношений, в которых слон все-таки больше. Образы слона и комара помогали решить эту задачу. Иа и Ио образов не имеют. Остались одни отношения. А по одним отношениям могут судить только дети с развитым теоретическим мышлением. Не случайно этот тип задач использовался психологами для тестирования уровня развития теоретического мышления.

Наблюдение пятое. Очевидное. Имеется сильнейшая корреляция между неумением решать абстрактные последовательности неравенств и другими типами задач. Говоря проще: кому не по силам задача на сравнение, тому не по силами другие типы задач.

Известны варианты усложнения этих задач: «Иа ТПРК-атее, чем Ио. Ио ТПРК-атее, чем Ие. Кто ТПРК-атее всех? Кто самый неТПРК-атый? Кто средний?»

Какими названиями или обобщающими словами мы пользуемся в этом типе задач? Хотя бы - «задача, сравнение, неравенство». Этого на первое время, на наш взгляд, достаточно.

Дети, не умеющие решать этот тип задач, должны сталкиваться с большими трудностями при освоении математики, так как математика требует овладения обобщенным представлением о неизвестном (типа X, У, 2).

5.6. Пятый тип задач. Сравнительные последовательности

Перейти на страницу:

Похожие книги