Начнем с того, что плохой алгоритм может оказаться самым лучшим. Алгоритмы, поддерживающие работу компаний в Кремниевой долине, с каждым годом становятся все более изощренными, а вводимые в них данные – все более объемными и полезными. Согласно модели будущего, Google должен
Именно так все может быть! Но может и не быть. Существует множество математических задач, в которых обеспечение большего количества данных повышает точность полученного результата довольно предсказуемым способом. Чтобы предсказать траекторию движения астероида, необходимо измерить скорость его движения и определить местоположение, а также оценить гравитационное воздействие его астрономических соседей. Чем больше связанных с астероидом параметров вы сможете измерить, тем более точную траекторию его движения вам удастся составить.
Однако некоторые задачи похожи скорее на прогноз погоды. Это еще одна ситуация, в которой важнейшую роль играет наличие большого объема подробных данных, а также вычислительных ресурсов для их быстрой обработки. В 1950 году первой вычислительной машине ENIAC понадобилось двадцать четыре часа, чтобы создать имитационную модель погоды на сутки – это стало поразительным достижением в области компьютерных вычислений космической эры. В 2008 году такие вычисления были выполнены на мобильном телефоне Nokia 6300 менее чем за секунду{137}. В наше время прогнозы погоды не просто составляются быстрее – они намного точнее и охватывают более продолжительный период. Типичный прогноз погоды на пять дней в 2010 году был таким же точным, как прогноз на три дня в 1986 году{138}.
Хотелось бы думать, что прогнозы будут становиться все лучше и лучше по мере усиления нашей способности собирать данные. Не сможем ли мы в конечном счете реализовать в высшей степени точную имитационную модель атмосферы всей планеты в компьютерном парке где-нибудь под штаб-квартирой сети The Weather Channel? В таком случае, чтобы узнать погоду в следующем месяце, вам понадобится просто выполнить имитационное моделирование, охватывающее немного более длительный период.
Все это заманчиво, но невозможно. Энергия в атмосфере циркулирует очень быстро, меняя масштаб от крохотного до глобального; при этом даже малейшие изменения в одном месте и времени могут повлечь за собой совершенно другие последствия в другом месте через несколько дней. С формальной точки зрения, погода
Существует жесткое ограничение в отношении того, на какой период мы можем прогнозировать погоду, сколько бы данных нам ни удалось собрать. Лоренц считал, что этот период должен быть не более двух недель, и усилия метеорологов всего мира до сих пор не дали нам оснований ставить этот предел под сомнение{140}.
К чему ближе человеческое поведение – к астероиду или погоде? Безусловно, все зависит от того, о каком аспекте человеческого поведения идет речь. Как минимум в одном смысле поведение человека прогнозировать даже труднее, чем погоду. У нас есть очень хорошая математическая модель для погоды, позволяющая нам составлять более точные прогнозы хотя бы на краткосрочный период при наличии доступа к большему объему данных – даже если потом присущий этой системе хаос неизбежно берет верх. В случае человеческого поведения у нас такой модели нет и, видимо, никогда не будет. Это делает задачу прогнозирования гораздо более трудной.
Онлайновая компания Netflix, работающая в области индустрии развлечений, в 2006 году организовала конкурс с главным призом в один миллион долларов, чтобы определить, сможет ли кто-нибудь в мире написать алгоритм, который будет справляться с задачей по рекомендациям фильмов клиентам лучше, чем алгоритм самой компании{141}. Казалось, финишная черта находится не так уж далеко от старта: победителем должна была стать первая программа, которая на 10 % лучше справится с задачей рекомендации фильмов клиентам, чем программа Netflix.