Читаем Как не ошибаться. Сила математического мышления полностью

Таким образом, -T = T – 1 – уравнение с участием Т, которое выполняется только в случае, если Т равно 1/2. Может ли сумма бесконечно большого количества целых чисел каким-то волшебным образом превратиться в дробное число? Тот, кто говорит «нет» в ответ на этот вопрос, действительно имеет право как минимум с некоторым недоверием относиться к сомнительным аргументам подобного рода. Но обратите внимание на то, что некоторые люди дают утвердительный ответ на этот вопрос, в том числе итальянский математик и священник Гвидо Гранди, именем которого обычно называют ряд 1 - 1 + 1 - 1 + 1 - 1 + …. В работе, опубликованной в 1703 году, Гранди привел доводы в пользу того, что сумма данного ряда равна 1/2, а также заявил, что этот удивительный вывод символизирует сотворение Вселенной из ничего. (Не беспокойтесь, я тоже не понимаю последний пункт.) Другие выдающиеся математики того времени, такие как Лейбниц и Эйлер, были согласны со странными расчетами Гранди и даже с его интерпретацией{25}.

Но на самом деле решение загадки с числом 0,999… (а также парадокса Зенона и ряда Гранди) кроется несколько глубже. Вы совсем не должны поддаваться давлению моих алгебраических доводов. Например, вы можете настаивать на том, что 0,999… равно не 1, а скорее 1 минус некое крохотное бесконечно малое число. Если уж на то пошло, вы можете настаивать и на том, что число 0,333… не равно в точности 1/3, а также отличается от этого числа на некую бесконечно малую величину. Для того чтобы довести данную мысль до конца, потребуется определенное упорство, но это можно сделать. Когда-то у меня был студент по имени Брайан, который изучал математический анализ. Не удовлетворившись теми определениями, которые давались на занятиях, Брайан сам разработал довольно большой фрагмент этой теории, назвав бесконечно малые величины числами Брайана.

На самом деле Брайан не был первым, кто решил заняться этим. Существует целая область математики под названием «нестандартный анализ», которая специализируется на изучении чисел такого рода. Теория, сформулированая Абрахамом Робинсоном в середине ХХ столетия, наконец позволила понять смысл «бесконечно малых приращений», которые Беркли считал такими нелепыми. Цена, которую придется за это заплатить (или, если посмотреть на это с другой стороны, награда, которую вы за это получите), – обилие новых типов чисел, причем не только бесконечно малых, но и бесконечно больших – огромное множество чисел всех форм и размеров[46].

Так случилось, что Брайану повезло – у меня в Принстонском университете был коллега Эдвард Нельсон, крупный специалист в области нестандартного анализа. Я устроил им встречу, с тем чтобы Брайан мог больше узнать об этой области. Впоследствии Эд рассказывал мне, что та встреча прошла не очень хорошо. Как только Эд дал понять, что на самом деле бесконечно малые величины никто не будет называть числами Брайана, Брайан полностью потерял интерес к этой области математики.

(Мораль: люди, начинающие заниматься математикой ради славы и признания, задерживаются в науке ненадолго.)

Но мы так и не приблизились к разрешению нашего спора. Что представляет собой число 0,999… на самом деле? Это 1? Или это некое число, на бесконечно малую величину меньшее 1, – число, принадлежащее к совершенно необычному классу чисел, который даже не был открыт сотню лет назад?

Правильный ответ состоит в том, чтобы вообще не задавать такого вопроса. Что представляет собой число 0,999… на самом деле? По всей вероятности, некую сумму такого рода:

0,9 + 0,09 + 0,009 + 0,0009 + …

Но что она значит? Настоящая проблема заключается в злополучном троеточии. Не может быть никаких споров по поводу того, что значит сумма двух, трех или сотни чисел. Перед нами всего лишь математическое обозначение физического процесса, который мы прекрасно понимаем: возьмите сотню куч чего угодно, смешайте их вместе и определите, сколько и чего у вас получилось. Но бесконечно большое количество? – это совсем другая история. В реальном мире вы не можете получить бесконечно большое количество множеств. Чему равно числовое значение бесконечной суммы? Его не существует – пока мы не зададим это значение. В чем и состояла новаторская идея Огюстена Луи Коши, который в 1820-х годах ввел в математический анализ понятие предела[47].

Лучше всего это объясняет Годфри Гарольд Харди в книге Divergent Series («Расходящиеся ряды»), опубликованной в 1949 году:

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное