Читаем Искусство статистики. Как находить ответы в данных полностью

коэффициент регрессии: оцениваемый параметр в статистической модели, который выражает степень взаимосвязи между объясняющей переменной и результатом во множественной регрессии. Этот коэффициент будет иметь различную интерпретацию в зависимости от того, является ли результирующая переменная непрерывной (множественная линейная регрессия), долей (логистическая регрессия), целым числом (пуассоновская регрессия) или временем выживания (регрессия Кокса);

кризис воспроизводимости: утверждение, что многие опубликованные научные выводы основаны на недостаточно качественных работах, поэтому такие результаты не могут воспроизвести другие исследователи;

критерий независимости хи-квадрат/критерий согласия хи-квадрат: статистический критерий, показывающий степень несовместимости данных с принятой статистической моделью, заключающей нулевую гипотезу (например, величины независимы или имеют определенное распределение). А именно: критерий сравнивает множества каких-то наблюдаемых величин x1,…,xm и ожидаемых при нулевой гипотезе величин y1,…,ym. Простейший вариант критерия –

При нулевой гипотезе значение χ2 приближенно будет иметь известное χ2-распределение. Это позволяет вычислить соответствующее P-значение;

логарифмическая шкала: логарифм по основанию 10 для положительного числа x обозначается y = log10x, что эквивалентно x = 10y. В статистическом анализе log x обычно обозначает натуральный логарифм loge x, что эквивалентно x = ey, где e – основание натурального логарифма 2,71828…;

логистическая регрессия: форма множественной регрессии, когда переменная отклика – это доля, а коэффициенты соответствуют log(отношение шансов). Допустим, мы наблюдаем набор долей yi = ri/ni в предположении, что у нас биномиальные величины с вероятностями pi, а соответствующий набор предикторных переменных – . Предполагается, что логарифм шансов с оцениваемой вероятностью определяется линейной регрессией:

Допустим, что одна из предикторных переменных, например x1, является двоичной, где x1 = 0 соответствует отсутствию воздействия потенциального риска, а x1 = 1 соответствует воздействию. Тогда коэффициент b1 – это log(отношение шансов);

ложноположительный: неверная классификация «отрицательного» случая как «положительного»;

математическое ожидание (среднее): среднее значение случайной величины (взвешенное по вероятностям или по плотности). Для дискретной случайной величины это ∑xp(x), а для непрерывной случайной величины это ∫xp(x)dx. Например, если случайная величина X – это число очков, выпавших на симметричной игральной кости, то есть P(X = x) = 1/6 для x = 1,2,3,4,5,6, то ;

матрица ошибок: таблица, где собраны верные и неверные классификации, произведенные каким-либо алгоритмом;

машинное обучение: процедуры извлечения алгоритмов (например, для классификации, прогнозирования или кластеризации) из сложных данных;

медиана (выборки): значение, которое окажется посередине, если упорядочить числа в выборке. Более строго: упорядочив числа в выборке, обозначим наименьшее число x(1), второе по величине x(2) и так далее (получившийся набор x(1),x(2),…,x(n) называют вариационным рядом). Если n – нечетное число, то медиана – число, находящееся точно посередине вариационного ряда, то есть число . Если же n – четное число, то медианой обычно считают полусумму двух средних чисел;

метаанализ: формальный статистический метод объединения результатов нескольких исследований;

метод наименьших квадратов: предположим, что у нас есть n пар чисел (x1,y1),(x2,y2), ,sx – выборочное среднее и среднеквадратичное отклонение для чисел x и sy – выборочное среднее и среднеквадратичное отклонение для чисел y. Тогда прямая регрессии, вычисленная по методу наименьших квадратов, определяется уравнением

где

 – прогнозируемое значение зависимой переменной для определенного значения независимой переменной x;

коэффициент наклона ;

отсекаемый отрезок . Прямая по методу наименьших квадратов проходит через центр тяжести ;

i-й остаток – разность между i-м наблюдением и его предсказанным значением ;

скорректированное значение i-го наблюдения – это сумма остатка и отсекаемого отрезка, то есть . Это значение мы наблюдали бы в «среднем» случае, если бы имели а не x = xi;

остаточная сумма квадратов – это сумма квадратов всех остатков, то есть . Прямая, построенная по методу наименьших квадратов, определяется как прямая, минимизирующая сумму квадратов разностей;

коэффициент наклона b1 и коэффициент корреляция Пирсона r связаны формулой b1 = rsy / sx. Поэтому в случае, когда стандартные отклонения для x и y одинаковы, коэффициент угла наклона в точности равен коэффициенту корреляции;

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука