анализ по назначенному лечению: принцип, согласно которому участники рандомизированных испытаний анализируются в соответствии с вмешательством, которое им назначено, вне зависимости от того, получили ли они его на самом деле;
апостериорное распределение: в байесовском анализе вероятностное распределение неизвестных параметров, определенное с учетом наблюдаемых данных по теореме Байеса;
априорное распределение: в байесовском анализе начальное вероятностное распределение для неизвестных параметров. После наблюдения каких-то данных его пересматривают, получая апостериорное распределение с помощью теоремы Байеса;
асимметричное распределение: распределение (выборки или генеральной популяции), которое несимметрично и имеет длинный левый или правый хвост. Распространено у величин со значительной неравномерностью, например доход или продажи книг. Для таких распределений величины выборочного среднего и стандартного отклонения могут вводить в заблуждение;
Байеса коэффициент: относительное подтверждение, которое дает какой-то набор данных двум альтернативным гипотезам. Для гипотез
Байеса теорема: утверждение, которое показывает, как наступление события
байесовский подход: подход к статистическим выводам, при котором вероятность используется не только для стохастической, но и для эпистемической неопределенности в отношении неизвестных фактов. Затем с помощью теоремы Байеса можно пересмотреть представления в свете новых фактов;
Бернулли распределение: если
бинарные (двоичные) данные: переменные, которые могут принимать два значения, часто это ответы типа «да»/«нет» на какой-нибудь вопрос. Математически их можно представить с помощью распределения Бернулли;
биномиальное распределение: если у нас есть
большие данные: становящееся все более анахроничным выражение, которое иногда характеризуется четырьмя параметрами: большим объемом данных, разнообразием источников (изображения, аккаунты в социальных сетях, транзакции), большой скоростью получения и возможной нехваткой достоверности из-за шаблонных способов сбора;
Бонферрони поправка: метод для регулирования размера критерия (ошибка первого рода) или доверительных интервалов при одновременном тестировании многих гипотез. Более точно, при проверке
Бриера показатель: мера точности вероятностных прогнозов, основанная на среднеквадратичной ошибке прогноза. Если
бутстрэппинг: способ генерировать доверительные интервалы и распределения тестовых статистик путем создания повторных выборок из наблюдаемых данных, а не использования вероятностной модели для соответствующей случайной величины. Бутстрэп-выборка из набора данных