Читаем Искусство статистики. Как находить ответы в данных полностью

анализ по назначенному лечению: принцип, согласно которому участники рандомизированных испытаний анализируются в соответствии с вмешательством, которое им назначено, вне зависимости от того, получили ли они его на самом деле;

апостериорное распределение: в байесовском анализе вероятностное распределение неизвестных параметров, определенное с учетом наблюдаемых данных по теореме Байеса;

априорное распределение: в байесовском анализе начальное вероятностное распределение для неизвестных параметров. После наблюдения каких-то данных его пересматривают, получая апостериорное распределение с помощью теоремы Байеса;

асимметричное распределение: распределение (выборки или генеральной популяции), которое несимметрично и имеет длинный левый или правый хвост. Распространено у величин со значительной неравномерностью, например доход или продажи книг. Для таких распределений величины выборочного среднего и стандартного отклонения могут вводить в заблуждение;

Байеса коэффициент: относительное подтверждение, которое дает какой-то набор данных двум альтернативным гипотезам. Для гипотез H0, H1 и данных x это отношение равно p(x|H0)/p(x|H1);

Байеса теорема: утверждение, которое показывает, как наступление события A изменяет наше априорное представление об утверждении B (априорную вероятность p(B)) и дает апостериорное представление (апостериорную вероятность p(B|A)) с помощью формулы . Ее нетрудно доказать: поскольку p(BA) = p(AB), то правило умножения для вероятностей означает, что p(B|A)p(A) = p(A|B)p(B), и деление обеих частей на p(A) дает утверждение теоремы;

байесовский подход: подход к статистическим выводам, при котором вероятность используется не только для стохастической, но и для эпистемической неопределенности в отношении неизвестных фактов. Затем с помощью теоремы Байеса можно пересмотреть представления в свете новых фактов;

Бернулли распределение: если X – случайная величина, которая принимает значение 1 с вероятностью p и значение 0 с вероятностью 1−p, то X имеет распределение Бернулли. Математическое ожидание (среднее) такой величины равно p, а дисперсия составляет p(1−p). Сам эксперимент с двумя исходами (успех и неудача) называется испытанием Бернулли;

бинарные (двоичные) данные: переменные, которые могут принимать два значения, часто это ответы типа «да»/«нет» на какой-нибудь вопрос. Математически их можно представить с помощью распределения Бернулли;

биномиальное распределение: если у нас есть n независимых испытаний Бернулли с одной и той же вероятностью успеха, то число успехов в n испытаниях имеет биномиальное распределение. Формально: пусть X1,…,Xn – независимые случайные величины, имеющие распределение Бернулли с вероятностью успеха p. Тогда их сумма R = X1 + X, +…+ Xn имеет биномиальное распределение, при этом , математическое ожидание (среднее) равно np, а дисперсия np(1−p). Наблюдаемое отношение R/n имеет среднее p и дисперсию p(1−p)/n. Поэтому величину R/n можно рассматривать как оценку для p со стандартной ошибкой ;

большие данные: становящееся все более анахроничным выражение, которое иногда характеризуется четырьмя параметрами: большим объемом данных, разнообразием источников (изображения, аккаунты в социальных сетях, транзакции), большой скоростью получения и возможной нехваткой достоверности из-за шаблонных способов сбора;

Бонферрони поправка: метод для регулирования размера критерия (ошибка первого рода) или доверительных интервалов при одновременном тестировании многих гипотез. Более точно, при проверке n гипотез при общем размере критерия (ошибка первого рода) α каждую гипотезу проверяют с размером α/n. Это эквивалентно тому, что для каждой оцениваемой величины указываются доверительные интервалы 100(1−α/n)%. Например, если вы проверяете 10 гипотез с общим 5 %, то P-значения нужно сравнивать с 0,05/10 = 0,005 и использовать 99,5-процентные доверительные интервалы;

Бриера показатель: мера точности вероятностных прогнозов, основанная на среднеквадратичной ошибке прогноза. Если p1,…,pn – это вероятности для двоичных наблюдений x1,…,xn, принимающих значение 0 и 1, то показатель Бриера – это число . По сути, это критерий среднеквадратичной ошибки, примененный к бинарным данным;

бутстрэппинг: способ генерировать доверительные интервалы и распределения тестовых статистик путем создания повторных выборок из наблюдаемых данных, а не использования вероятностной модели для соответствующей случайной величины. Бутстрэп-выборка из набора данных x1,…,xn – это выборка размера n с возвратом, так что хотя в нее попадают те величины, которые есть в исходной выборке, их доли в бутстрэп-выборке в целом будут отличаться от долей в исходной выборке;

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука