Первым, кто представил такие правила, был немецкий математик и механик Густав Герглотц (1881–1953). Он вывел законы сохранения из универсальных соображений инвариантности относительно группы Пуанкаре в 1911 году, разрабатывая релятивистскую теорию сплошных сред. Однако поначалу сам не придал этому никакого особого значения. Лишь немного позже фундаментальный смысл этих результатов был осознан замечательным немецким математиком Феликсом Клейном (1849–1925), который его всячески пропагандировал. После чего симметрии пространства Минковского стали основой построения законов сохранения в любой релятивистской теории. В частности, на результаты Герглотца Клейн обратил внимание другого немецкого математика Фридриха Энгеля (1861–1941). Тот свел в единую форму группу смещений в механике Ньютона. Это так называемая группа Галилея – Ньютона, она объединяет смещения в пространстве Евклида и смещения по времени. А в 1916 году показал в общем виде, что все сохраняющиеся величины (энергия, импульс и момент импульса) в нерелятивистской физике могут быть построены из инвариантности относительно движений этой группы. Мы привели этот пример, чтобы подчеркнуть насколько бурным было развитие релятивистской физики. Обоснование и интерпретация законов сохранения в СТО было достигнуты раньше, чем в механике Ньютона!
На основе инвариантности относительно группы Пуанкаре была пересмотрена и иерархия сохраняющихся величин, которые были объединены в единые комплексы. Обсуждая СТО, мы уже установили, что в случае пробной массивной частицы единый смысл имеет 4-вектор энергии-импульса: энергия представляет его временную компоненту, а импульс – три пространственные компоненты. При этом обе эти меры, определяющие 4-вектор, являются составляющими более общей единой меры – релятивистского тензора энергии-импульса
Подведем некоторый итог. Предположим, что физическая система в СТО замкнута, т. е. не взаимодействует с внешним миром. Тогда смещению по временной оси соответствует закон
Нелокализуемость сохраняющихся величин в ОТО
Энергия любит материю, но изменяет ей с пространством во времени.
Теперь, располагая определенным представлением о сохраняющихся величинах для физических систем в пространстве Минковского, обратимся к ОТО. Прежде всего отметим принципиальную разницу в трактовке пространства-времени. В СТО пространство-время – это арена, на которой разворачиваются физические взаимодействия, это «жесткий каркас», по отношению к которому определяются сохраняющиеся величины, более того, симметрии «каркаса» однозначно связаны с ними. В ОТО ситуация сложнее: пространство-время играет двойственную роль. С одной стороны, оно остается ареной для физических взаимодействий материи, с другой стороны, само является динамическим объектом и