– Это она стартовала двести восемнадцать лет тому назад, о ней уже все забыли, но благодаря эйнштейновскому сокращению времени, происходящему от движения на субсветовых скоростях, экипаж постарел всего на два года!
– Благодаря чему? Ах, Эйнштейн… Да-да, помню.
Представления о пространстве Минковского помогают разобраться и с так называемым
На самом деле парадокс сформулирован точно так же, как многие детские загадки, когда важные детали замалчиваются. Об их существовании нужно догадаться.
Парадокс был бы, действительно, парадоксом, если бы положение близнецов было симметричным. Но так ли это? Путешественник, прежде чем полететь к звездам, должен разогнаться до высоких скоростей, потом, где-то там далеко, развернуться, а вернувшись к Земле, замедлиться, чтобы встретиться со своим братом. Ничего этого не происходит с братом-домоседом. Как минимум, во время трех периодов своего путешествия космонавт будет испытывать ускорения. Поэтому, строго говоря, на пространственно-временной диаграмме мировая линия брата-путешественника будет кривая.
Рис. 5.5. Решение парадокса близнецов
Качественно проблему можно решить, представив мировую линию путешественника в виде ломаной, состоящей из двух отрезков, как показано на рис. 5.5, ускорения «скрыты» в изломах этой ломаной. Мировая линия брата-домоседа совпадает с осью времени. Сравним интервал отрезка прямой на оси времени между событиями
Тот же вывод можно сделать по-другому. Нанесем на наклонных мировых значения собственного времени путешественника и соединим их с точно такими же значениями для времени на мировой линии домоседа. Получим два набора параллельных линий, как на рис. 5.5, первый набор синхронизован на момент их разлуки и в будущее, второй набор синхронизован от момента встречи и в прошлое. Эти наборы параллельных линий всегда про-странственноподобны, они не имеют никакого отношения ни к световым конусам, ни к реальным наблюдателям. Очевидно, домосед проживет больше времени, см. рис 5.5. Отрезок на временной оси, не получивший своих точек-двойников на ломаной линии, определяет – насколько домосед будет старше путешественника при встрече.
Ситуация на рис. 5.5 несколько утрирована. Получается, что брат-путешественник стартовал с бесконечным ускорением, затем развернулся с бесконечным ускорением, и т. д. Реальная мировая линия брата-путешественника конечно плавная, соответствующая конечным ускорениям. Однако выводы не изменятся. Мы можем кривую аппроксимировать ломаной, причем с любой точностью. А анализ ломаной мировой линии, имеет она два отрезка, как на рис. 5.5, или любое другое количество отрезков, принципиально не отличается. Другими словами, парадокса не возникает, если не нарушаются правила вычисления интервалов. Тогда результат всегда таков: интервал отрезка
Некоторые особенности ускоренных наблюдателей обсуждаются в Дополнении 6, которое лучше читать после главы 8 (о черных дырах).
Пуанкаре и Эйнштейн