А посмотрите-ка на формулу горения сахара: С6Н12O6 + 6O2 = 6CO2 + 6H2O. Она скромно умалчивает о химических перипетиях, в которых могут участвовать молекулы сахара. Ибо уравнение реакции отражает лишь перераспределение химических связей между атомами. А нас интересует сейчас, как протекает химический процесс от начала до конца.
Для этого нам придется заглянуть в самые потайные механизмы, прячущиеся за кулисами химических уравнений.
Мы уже знаем, как молекула рождается и как она умирает. Но образование или разрушение валентной связи — лишь итог химической реакции. Причем в реальных системах приходится иметь дело с огромными скоплениями молекул, где беспокойные члены коллектива оказывают друг на друга заметное влияние. Например, когда мы пишем: 2H2 + O2 = 2H2O, то вовсе не имеем в виду, что две молекулы водорода прореагировали с одной молекулой кислорода и дали две молекулы воды. За каждым символом подразумевается колоссальное скопище частиц одного сорта. Уравнение же отражает лишь соотношение между частицами разных сортов, участвующих в реакции. А коли так, то естественно допустить, что изменение количества молекул придаст системе в целом какие-то новые качества.
Так оно и есть на самом деле.
Без следов воды не идет реакция 2H2 + O2 = 2H2O. Вода, которая гасит огонь, оказывает здесь каталитическое действие. Но та же реакция протекает по-разному в зависимости от того, насколько хорошо перемешаны водород и кислород.
Отдельный элементарный акт химического превращения, описываемый стехиометрическим равенством, зависит только от трех условий. От взаимной близости реагирующих частиц. От температуры (вернее, от их энергии). От присутствия и вида катализатора. Но химическое превращение — в пробирке ли, в заводском ли аппарате — сумма огромного количества одновременных элементарных актов. И трудно поверить, чтобы во всех случаях свидание реагирующих молекул или атомов протекало в совершенно одинаковых условиях.
В каком-то месте смесь может оказаться неоднородной. Где-то не будет близкого контакта с катализатором. Да и кинетическая энергия у одной молекулы иная, чем у другой. Более того: она изменяется от взаимных тумаков, которыми мимоходом награждают друг друга молекулы. Ведь они непрерывно снуют туда-сюда в полном беспорядке. При этом либо теряют часть своей энергии, либо приобретают дополнительную. И чем крупнее масштабы процесса, тем, очевидно, больше всяких случайностей в кишащей толпе частиц.
Загляните в холодильник. Температура в нем около нуля. Давление нормальное. Пусть емкость холодильника 224 литра. Это значит, что он рассчитан примерно на 10 грамм-молекул газа. Удесятерите число Авогадро (6·1023), и вы узнаете, сколько газовых частиц вмещает при нуле градусов ваш холодильник, когда он пуст. Чтобы точно описать такую систему, вам пришлось бы составить 60·1023 уравнений. В каждом — миллиарды миллиардов членов. И чтобы рассчитать, как двигается каждая отдельная молекула в течение секунды, потребовались бы миллиарды тысячелетий! Между тем заводской реактор в десятки раз вместительней вашего холодильника. Быть может, именно это обстоятельство делает неприменимыми к большому химическому реактору выводы, справедливые для маленькой пробирки?
Как ни странно, нет. Вот наперсток. Он вмещает в 100 тысяч раз меньше молекул, чем ваш холодильник. И число уравнений окажется во столько же раз меньше. Масштаб такого соотношения 300 лет и одни сутки. Огромная разница! Между тем решать систему из 60 миллиардов миллиардов уравнений (величина 60·1023, уменьшенная в 100 тысяч раз) вам пришлось бы тоже не менее миллиарда тысячелетий. Так что переход от пробирки к аппарату ненамного усложнил бы эту и без того непосильную задачу.
Однако математики ухитрились сделать так, что чем больше частиц, тем точнее описание системы! И это не парадокс. Ученых выручает статистика. Именно она избавила их от непомерной платы за точность, которую требовали законы классической механики.
Да, операции с большими числами подчиняются некоторым своеобразным закономерностям, теряющим силу для чисел малых.
Пожалуй, можно ограничиться одним, но достаточно поучительным примером.
Заболевание пассажира во время рейса — случай из ряда вон выходящий. Любой из нас изумится, если беда стряслась именно в его присутствии. Но для стороннего наблюдателя, скажем диспетчера аэропорта, имеющего дело с сотнями самолетов, а в каждом по сотне пассажиров, это событие не будет столь неожиданным. Он уже готов к тому, чтобы, скажем, примерно на каждую тысячу рейсов (сто тысяч пассажиров) ожидать какого-нибудь ЧП. Недаром любой аэровокзал имеет медпункт — «на всякий случай». Но даже бывалый врач большого аэродрома будет удивлен, если вдруг в один день сразу три таких случая, а потом ни одного много лет подряд.