Читаем Физика в примерах и задачах полностью

Теперь рассмотрим этот же процесс аннигиляции электрона и позитрона с точки зрения другой системы отсчёта, относительно которой электрон-позитронная пара перед аннигиляцией движется со скоростью v. Направление скорости v выберем так, чтобы оно совпадало с направлением распространения одного из испущенных фотонов. Обозначим через частоту фотона, излучаемого «вперёд», а через - излучаемого «назад». Тогда в этой системе отсчёта закон сохранения импульса в проекции на направление движения аннигилирующей пары принимает вид

h

c

-

h

c

=

2mv

1-v^2/c^2

.

(9)

При аннигиляции полная релятивистская энергия пары превращается в энергию излучения. Поэтому закон сохранения энергии записывается в виде

h

+

h

=

2mc^2

1-v^2/c^2

(10)

Из системы уравнений (9) и (10) легко найти частоты и . Умножив обе части (9) на с и сложив с уравнением (10), находим :

=

mc^2

h

c+v

c-v

1/2

=

c+v

c-v

1/2

.

(11)

Здесь использовано выражение (8) для частоты фотона, излучаемого при аннигиляции неподвижной пары. Аналогично, вычитая из уравнения (9) уравнение (10), находим :

=

c-v

c+v

1/2

.

(12)

Полученные формулы (11) и (12) и дают выражение для продольного эффекта Доплера в релятивистском случае. Частота . фотона, излучаемого по направлению движения, оказывается выше, а частота фотона, излучаемого против движения, - ниже, чем частота фотона, испускаемого неподвижным излучателем.

Легко видеть, что при v/c1 формулы (11) и (12) дают обычное выражение для нерелятивистского эффекта Доплера. Для этого домножим числитель и знаменатель подкоренного выражения в формуле (11) на c+v. Пренебрегая затем в знаменателе величиной v^2 по сравнению с c^2, получаем

=

(c+v)^2

c^2-v^2

1/2

1

+

v

c

,

(13)

что совпадает с формулой (6) при =0. Аналогично, формула (12) при v/c1 даёт выражение, совпадающее с формулой (6), если в последней положить =.

Во всех рассуждениях мы под частотой молчаливо подразумевали частоту излучения, регистрируемого неподвижным в данной системе отсчёта приёмником. Изменение частоты происходило только за счёт движения источника. На самом деле в случае электромагнитного излучения, распространяющегося в вакууме, все полученные формулы остаются справедливыми и при движении приёмника излучения, только в этом случае под v следует понимать относительную скорость - скорость источника относительно приёмника.

5. Фотонный парус.

На неподвижное идеальное плоское зеркало массы m нормально к его поверхности падает плоская световая волна. Под действием силы светового давления зеркало приходит в движение. Определить конечную скорость зеркала и энергию отражённой от него волны, если энергия падающей волны равна W.

На протяжении всей книги мы много раз убеждались, что очень многие задачи можно решить, не вникая в детали происходящих физических явлений. Для ответа на многие вопросы достаточно только представить общую картину рассматриваемых явлений и правильно применить подходящие фундаментальные законы сохранения. Так и в этой задаче. Точное динамическое решение здесь сопряжено с большими трудностями. В самом деле, энергия отражённой от зеркала волны зависит от того, как движется зеркало, а закон движения зеркала определяется его взаимодействием со световой волной. Однако совершенно ясно, что, независимо от механизма взаимодействия электромагнитной волны с зеркалом, должны выполняться законы сохранения энергии и импульса, поскольку рассматриваемая система - зеркало и световая волна - является замкнутой. Использование этих законов даёт возможность без труда решить эту задачу даже с учётом релятивистских эффектов, когда становится существенной зависимость массы движущегося тела от его скорости.

Приступим к решению задачи. Энергия падающей на зеркало световой волны равна W, а энергию отражённой волны обозначим через W. Вначале зеркало покоится. Тогда закон сохранения энергии можно записать в виде

W

+

mc^2

=

W

+

mc^2

1-v^2/c^2

.

(1)

Так как энергия электромагнитного поля W связана с его импульсом p соотношением

p

=

W

c

,

(2)

то закон сохранения импульса принимает вид

W

c

=-

W

c

+

mv

1-v^2/c^2

.

(3)

Знак минус в первом члене правой части формулы (3) соответствует тому, что отражённая от зеркала волна движется в обратном направлении. Для исключения энергии отражённой волны W умножим обе части равенства (3) на c и сложим почленно с (1). Тогда получим

2W

+

mc^2

=

mc^2

1-v^2/c^2

(1+v/c)

.

(4)

Простыми преобразованиями выражение (4) можно привести к виду

c+v

c-v

=

1

+

2W

mc^2

^2

.

(5)

Отсюда получим выражение для конечной скорости зеркала v:

v

=

c

1 +

2W

mc^2

- 1

1 +

2W

mc^2

+ 1

.

(6)

Теперь найдём энергию отражённой волны W. Для этого вычтем из выражения (1) равенство (3), умноженное на c:

mc^2

=

2W

+

mc^2

c-v

c+v

1/2

,

(7)

откуда с помощью (5) легко находим энергию отражённой волны W:

W

=

W

1+2W/mc^2

.

(8)

Интересно отметить, что энергия отражённой волны не может превышать половины энергии покоя зеркала, какой бы большой ни была энергия падающей волны. Действительно, пренебрегая единицей в знаменателе (8), мы только увеличим правую часть, поэтому

W

W

2W/mc^2

=

mc^2

2

.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука