Читаем Физика пространства - времени полностью

Здесь так же невозможно дать рецепты для анализа всех типов столкновений и превращений, которые могут иметь место в физике и происходят на самом деле, как было бы нелепо пытаться в кратком учебнике по основам эвклидовой геометрии перечислить и решить всё множество задач, которые могут быть поставлены там. Сущность типичной задачи можно сформулировать, обобщая аналогии табл. 12. Пусть даны такие-то и такие-то стороны многоугольника, а также такие-то и такие-то проекции их на направления север — юг, восток — запад и верх — низ, а также такие-то и такие-то углы. Требуется определить такие-то и такие-то длины («массы покоя»), проекции («энергии или импульсы») или углы («скорости относительно других частиц или относительно лаборатории»). Углубляться в разнообразные вычисления, необходимые для решения таких задач,— вовсе не значит прояснить основные идеи. В физике частиц эти «идеи» сводятся в конце концов к двум очень простым свойствам геометрии пространства-времени: 1) векторная сумма 4-векторов энергии-импульса всех участвующих в реакции частиц равна нулю (если брать 4-векторы продуктов реакции с обратным знаком) и 2) инвариантная абсолютная величина каждого 4-вектора равна массе покоя соответствующей частицы.

Применение законов сохранения к исследованию столкновений и превращений.

Известные и неизвестные величины

Применение этих идей регулируется стандартными правилами алгебры. 1) Чтобы найти n различных неизвестных, нужно иметь n независимых уравнений, в которых все прочие величины известны. 2) Если мы располагаем лишь n-r независимыми уравнениями, то r неизвестных величин останутся неопределенными. (Примером служит столкновение дейтрона заданной энергии с покоящимся дейтроном, приводящее к образованию ядра трития и протона. Если бы даже были заданы массы покоя всех четырех частиц, было бы всё равно невозможно предсказать исход этой реакции. Причина проста: протон может вылететь в любом из бесчисленного множества направлений, в каком ему заблагорассудится. В этой задаче угол вылета протона является неопределенным. Если задать этот угол как одно из условий задачи (в нашем примере = 90°), то можно вычислить энергию. Наоборот, задавая энергию, можно предсказать величину угла вылета протона). 3) Если мы имеем n+s независимых уравнений для нахождения s неизвестных, то нам достаточно для этого ограничиться первыми n уравнениями. Остальные s уравнений будут служить для проверки точности измерений или выполнения физических законов. Используя эти принципы, часто берут в качестве основных величин значения компонент E, p x, p y и p z различных частиц как для удобства их учета, так и ради систематического контроля числа известных и неизвестных величин.

Примером подсчета числа известных и неизвестных служит реакция: (Дейтрон) + (Дейтрон) (Протон) + (Ядро трития), используемая для нахождения массы ядра трития. Этот пример проанализирован в табл. 13.

Таблица 13.

Учёт известных и неизвестных величин, H^2+H^2->H^1+H^3 характеризующих реакцию

Комментарий.

Как и в тексте, здесь принято, что отсутствуют масс-спектрографические данные о массе H^3 в тот момент, когда эта масса определяется из баланса импульса и энергии в данной реакции. В таблице измеряемые величины обозначены через «ДА», те же, которые не измерены,— через «НЕТ».

Каждая из четырёх частиц характеризуется пятью символами (четыре компоненты энергии-импульса и масса покоя), так что в целом мы имеем 20 величин. Из них известны 10 (помеченные в таблице через «ДА») и 10 неизвестны. Для определения этих десяти неизвестных мы имеем ровно десять уравнений. Поэтому не удивительно, что информацию, содержащуюся в этих 10 уравнениях, можно скомбинировать таким образом, что получается одно уравнение (99), выражающее искомую массу ядра трития через измеряемые величины.

E=p t p x p y p z Инвариантная абсолютная величина 4-вектора

Реагенты (все компоненты 4-вектора энергии-импульса проставить в таблице с положительным знаком) H^2 (мишень) НЕТ (измеряется m, а не не посредственно E) ДА (нуль!) ДА (нуль) ДА (нуль)

m - ДА, ур. (100) (спектрометр) H^2 (быстрый) НЕТ (измеряется KE, см. ниже) НЕТ ДА (нуль) ДА (нуль)

m*=m - ДА (спектрометр)

Продукты реакции (все компоненты проставить в таблице с обратным знаком) H^1 (измерено) НЕТ (измеряется KE, см. ниже) ДА (нуль) НЕТ ДА (нуль)

m - ДА, ур. (101) (спектрометр) H^3 (не измерено) НЕТ НЕТ НЕТ НЕТ

m - «НЕТ»,ур. (105) (требуется найти)

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука