Читаем Физика пространства - времени полностью

Промежуток времени между регистрациями фотонов счётчиками A и B был измерен для множества пар таких событий. Промежутки различной длительности автоматически отводились в разные «каналы» многоканальной электронной вычислительной машины. В результате на горизонтальной оси (названной «номер канала») откладывалась относительная мера времени между попаданиями гамма-квантов в счётчики A и B. На вертикальной оси откладывались количества пар гамма-квантов, соответствующих данному промежутку времени, разделявшему моменты их регистрации. Нижняя кривая изображает результаты эксперимента на установке, подобной изображённой на рис. 122, где на лету аннигилировали позитроны заданной энергии. Верхняя кривая была получена при перенесении счётчика A в положение, составляющее 180° относительно счётчика B. В этом случае регистрировались только те пары гамма-квантов, для которых позитрон перед аннигиляцией останавливался (при этом лабораторная система отсчёта являлась системой центра масс, в которой фотоны испускаются в двух взаимно противоположных направлениях!). Вершины верхней и нижней кривой соответствуют одному и тому же промежутку времени, откуда видно, что свет (гамма-кванты) распространяется от мишени до счётчика A с одинаковой скоростью независимо от того, двигался или покоился испустивший его позитрон. Если бы скорость гамма-кванта складывалась со скоростью летящего позитрона, вершина нижней кривой совпадала бы с левой пунктирной линией.

99*. Отождествление частиц по трекам в пузырьковой камере

Рис. 124. На снимке в пузырьковой камере заснят распад четырёх различных -мезонов. Из книги R. D. Hill, Tracking Down Particles, W. A. Benjamin, New York, 1963.

Движущиеся заряженные частицы могут оставлять наблюдаемые визуально следы в камере Вильсона, пузырьковой камере и искровой камере, так как заряд частицы взаимодействует на расстоянии с электронами в атомах, вызывая образование ионов. Эти ионы детектируются различными способами в указанных трёх видах камер. Пузырьковые камеры заполняются жидким водородом, готовым закипеть (перегретым водородом). Возникающие при прохождении заряженных частиц высокой энергии ионы играют роль точек образования пузырьков («центров закипания»). На рис. 124 изображена картина, заснятая в пузырьковой камере. Там видно четыре разных -мезона, проникающих в камеру, которые все останавливаются в жидком водороде. Сначала происходит реакция распада -мезона на -мезон, трек которого виден на снимке, и на нейтральную частицу, не оставляющую следа. Затем каждый -мезон останавливается и распадается на положительный электрон (позитрон, e) и две нейтральные частицы. Спиральный трек одного из позитронов, движущихся в наложенном извне магнитном поле, занимает центр фотографии.

Сосредоточим внимание на первой реакции,

(покоящийся)

->

+

x

,

где x — неизвестная нейтральная частица. По радиусу кривизны трека -мезона в магнитном поле можно найти импульс этого мезона, оказывающийся равным p=58,2 me в единицах массы покоя электрона.

а) Пользуясь законами сохранения, найдите массу покоя нейтральной частицы (m=273,2 me и m=206,8 me).

б) Что это за нейтральная частица? Обсуждение. Самой лёгкой из известных частиц с ненулевой массой покоя является электрон. Приближённый расчёт в (а) приводит к предположению, что масса покоя частицы x равна нулю. Может быть, это фотон? Такая возможность исключается другим законом сохранения — для момента импульса. Существовавший сначала -мезон обладал моментом импульса, равным нулю. Если потребовать выполнения закона сохранения момента импульса, то следует заключить что суммарный момент частиц — продуктов реакции — равен нулю. Возникший -мезон имеет спиновый момент импульса, равный 1/2 h= 1/2 ·h/(2) где h — постоянная Планка. Мы знаем к тому же, что спиновый момент импульса фотона равен h Невозможно, чтобы два момента, соответственно равные 1/2 h и h, при какой-либо их ориентации в сумме дали полный момент импульса равный нулю. Значит, частица x не может быть фотоном. Определите, чему равен её спиновый момент импульса? Мы называем частицу x нейтрино. Здесь вы определили два основных свойства нейтрино, даже вообще не увидев его наблюдаемых следов!

100*. Накопительные кольца и встречные пучки

Рис. 125. Пристонско-станфордский эксперимент по встречным электронным пучкам.

Электроны инжектировались в каждое кольцо примерно по 10 мин. Когда оба кольца были таким образом заполнены, линейный ускоритель был отключён, и в течение 30 мин снимались данные. Потери энергии электронами, излучавшими из-за ускоренного движения по круговым орбитам, компенсировались радиоволновым методом в резонаторах радиочастотной «подкачки».

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука