Читаем Feynmann 4 полностью

Давайте разберемся в наших машинах получше. Одно из свойств всех машин нам уже известно. Если в машине есть трение, то неизбежны потери энергии. Наилучшей машиной была бы машина вообще без трения. Предположим, что мы имеем дело с теми же идеальными машинами, что и при изучении закона сохранения энергии, т. е. машинами, которым совсем не надо преодолевать трения.

А теперь обсудим аналог движения без трения — «лишенный трения» перенос тепла. Если мы приложим горячее тело к телу, обладающему более низкой температурой, то возникнет теп­ловой поток. Тепло течет от горячего тела к холодному, и, чтобы довернуть поток вспять, нужно слегка изменить темпе­ратуру какого-нибудь одного тела. Но машина, лишенная трения, будет под действием сколь угодно малой силы послушно двигаться туда, куда ей приказывают, а когда сила будет дей­ствовать в другую сторону, охотно последует за ней. Аналогом машины без трения может служить устройство, в котором бес­конечно малые изменения температуры могут повернуть тепло­вой поток вспять. Если разность температур конечна, то это невозможно. Но если тепло течет между двумя телами прак­тически при одинаковой температуре и достаточно бесконечно малого изменения температуры, чтобы поток повернул в любом направлении, то поток считается обратимым (фиг. 44.4).

Фиг. 44.4. Обрати­мый перенос тепла.

Если нагреть слегка левую половину тела, тепло потечет вправо; если чуть-чуть охладить левую половину, тепло устремится влево. Итак, оказалось, что идеальной машиной является так называемая обратимая машина, в которой любой процесс обратим в том смысле, что малейшие изменения условий работы могут заставить машину работать в обратном направлении. Это означает, что машина не должна ни в каком месте иметь трения; в такой машине не должно быть также места, где тепло резер­вуара или пар котла прямо соприкасались бы с какими-то более холодными или более горячими частями.

Займемся идеальной машиной, в которой обратимы все процессы. Чтобы показать, что создание такой машины в прин­ципе возможно, мы просто приведем пример рабочего цикла, причем нас не интересует возможность его практической реализации, достаточно того, что с точки зрения Карно он обратим.

Предположим, что в цилиндре, оборудованном поршнем без трения, имеется газ. Это не обязательно идеальный газ. Со­держимое цилиндра вообще не обязано быть газом. Но для определенности будем считать, что в цилиндре идеальный газ. Предположим еще, что имеются две тепловые подушки Т1 и Т2два очень больших тела, поддерживаемых при опре­деленных температурах T1 и Т2 (фиг. 44.5).

Фиг. 44.5. Шаги цикла Карно.

а — шаг 1. Изотермическое расшире­ния при t1, поглощается тепло Q1; 6 — шаг 2. Адиабатическое расшире­ние; температура падает от T1, до Т2; в —шаг 3. Изотермическое сжа­тие при Т2; выделяется тепло Q2; г —шаг 4. Адиабатическое сжатие; температура поднимается от Т2, до T1.

Будем считать, что Т1 больше Т2. Для начала нагреем газ и, положив цилиндр на подушку T1, позволим газу расшириться. Пусть по мере притока тепла в газ поршень очень медленно выдвигается из цилиндра. Тогда можно поручиться, что темпе­ратура газа не будет сильно отклоняться от Т1. Если выдер­нуть поршень очень быстро, температура в цилиндре может упасть значительно ниже Т1 и процесс уже нельзя будет счи­тать полностью обратимым. Если же мы будем медленно вы­таскивать поршень, температура газа останется близкой к температуре Т1. С другой стороны, если поршень медленно вдвигать обратно в цилиндр, температура станет лишь чуть-чуть повыше температуры Т1 и тепло потечет вспять. Вы видите, что такое изотермическое (при постоянной температуре) рас­ширение может быть обратимым процессом, если только произ­водить его медленно и осторожно.

Чтобы лучше понять, что происходит, нарисуем кривую зависимости давления газа от его объема (фиг. 44.6).

Фиг. 44.6. Цикл Карно.

Когда газ расширяется, его давление падает. Кривая 1 показывает, как изменяются объем и давление, если в цилиндре поддер­живается постоянная температура Т1. Для идеального газа эта кривая описывается уравнением PV=NkT1. Во время изотер­мического расширения по мере увеличения объема давление падает, пока мы не остановимся в точке b. За это время газ заберет из резервуара тепло Q1, ведь мы уже знаем, что если бы газ расширялся, не соприкасаясь с резервуаром, он бы остыл. Итак, мы закончили расширение в точке b. Давайте теперь: снимем цилиндр с резервуара и продолжим расширение.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука