Читаем Feynmann 4 полностью

В паровой машине тепло используется для кипячения воды. Образующийся пар, расширяясь, толкает поршень, а поршень крутит маховик. Итак, пар вытолкнул поршень до отказа — что дальше? Эта порция пара свою работу выполнила, однако самое неразумное было бы закончить цикл выпуском пара в атмосферу, тогда к паровому котлу придется вновь подводить воду. Дешевле, а значит, и эффективнее отводить пар в другой сосуд, где он будет конденсироваться холодной водой, и образующуюся при этом воду можно будет снова вернуть в паровой котел, обеспечив непрерывную циркуляцию. Таким образом, паровая машина поглощает тепло и превращает его в работу. А может быть, лучше залить котел спиртом? Какими свойствами должно обладать вещество, чтобы обеспечить наилучшую работу машины? Этот вопрос задавал себе Карно и, размышляя таким образом, как мы уже сказали, попутно открыл соотно­шение очень общего типа.

Все результаты термодинамики содержатся в нескольких предельно простых утверждениях, называемых законами тер­модинамики. Во времена Карно первый закон термодинамики — закон сохранения энергии —был еще не известен. Однако аргументы были сформулированы Карно так точно, что они оказались правильными, хотя первый закон тогда не был еще открыт! Немного позже Клаузиус привел более простой вывод, который понять оказалось легче, чем очень тонкие рассуждения Карно. Но Клаузиус исходил из предположения, что сохра­няется не полная энергия, а теплота; так считала в то время калорическая теория, которая впоследствии была вообще отвергнута как неверная. Поэтому часто говорят, что аргументы Карно были ложными. На самом же деле логика Карно безуко­ризненна. Неверно только упрощенное толкование этих аргу­ментов Клаузиусом, а именно с ним все обычно знакомятся.

Так случилось, что так называемый второй закон термоди­намики был открыт Карно раньше первого закона! Было бы очень интересно привести здесь аргументы Карно, не опира­ющиеся на первый закон. Но придется отказаться от этого, потому что мы изучаем физику, а не историю. С самого начала будем пользоваться первым законом, хотя многое можно было бы сделать и без него.

Сначала сформулируем первый закон, закон сохранения энергии: если нам дана система и мы подводим к ней тепло и производим над ней какую-то работу, то приращение энергии системы равно подведенному теплу и затраченной работе. Мы запишем все это так: к системе подводится тепло Q и над ней производится работа W, тогда энергия системы U возрастает; эту энергию иногда называют внутренней энергией. Связаны эти величины следующим соотношением:

Изменение U=Q+W. (44.1)

Изменение U можно получить, добавляя небольшое количе­ство тепла DQ и небольшую работу DW:

DU=DQ+DW. (44.2)

Это — дифференциальная форма того же закона. Все это мы уже хорошо знаем из предыдущей главы.

§ 2. Второй закон

А что такое второй закон термодинамики? Мы знаем, что если при работе приходится преодолевать трение, то потерян­ная работа равна выделившемуся теплу. Если мы преодолеваем трение в комнате при температуре Т и делаем это достаточно медленно, то температура в комнате изменится ненамного. Мы превращаем работу в тепло при постоянной температуре. Ну, а можно ли поступить наоборот? Сумеем ли мы каким-то спо­собом превратить тепло в работу при постоянной температуре? Второй закон термодинамики утверждает, что это невозможно. Было бы очень хорошо научиться превращать тепло в работу, изменив лишь направление процесса, похожего на трение. Если исходить только из закона сохранения энергии, можно считать, что тепловая энергия, например колебательная энер­гия молекул, способна служить удобным источником полезной энергии. Но Карно утверждал, что при постоянной температуре тепловую энергию нельзя извлечь из ее источника. Иначе говоря, если бы весь мир имел повсюду одинаковую температуру, то оказалось бы невозможным превратить тепловую энергию в работу. Хотя процессы, при которых работа пере­ходит в тепло, могут идти при постоянной температуре, не­возможно обратить их и вернуть работу обратно. Если говорить точно, Карно утверждал, что при постоянной температуре нель­зя извлечь тепло из его источника и превратить в работу, не производя больше никаких изменений в заданной нам системе или в окружающем пространстве.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука