Приведем пример. Легкие возникли у рыб задолго до появления первых сухопутных воздуходышащих позвоночных. И сегодня существуют примитивные воздуходышащие рыбы, такие, к примеру, как африканский многопер. Легкие помогают многоперу дышать, но абсолютной необходимости в них нет, поскольку рыба может получать кислород и через жабры. Однако дыша время от времени легкими, многопер может увеличить свою выносливость в плавании и доставить дополнительный кислород к сердцу. Около 360 млн лет назад одна из наследственных линий воздуходышащих рыб начала проводить некоторое время на суше. Постепенно время, проводимое этими животными без воды, увеличивалось, а мощные плавники приобретали способность держать вес тела при ходьбе. Со временем жабры исчезли совсем, и через несколько миллионов лет первые четвероногие стали полностью зависеть от легких. Этот процесс иллюстрируют окаменелости.
Здесь мы имеем сложную систему (тело четвероногого животного), которая окажется неработоспособной, если извлечь из нее всего одну деталь (легкие). И все же тщательное изучение окаменелостей и современных животных показывает, что сложность этой системы нельзя считать неуменьшаемой. Эволюция может добавить организму некую полезную систему — скажем, легкие, — в качестве дополнительной; необходимой эта анатомическая деталь станет много позже, и вот тогда уже удалить ее из организма будет действительно невозможно.
Примерно так же эволюция может создать сложную биохимическую систему из относительно простых предшественников. В последние годы ученым удалось сформулировать достаточно убедительные гипотезы по двум вопросам: как антарктические рыбы спасаются от замерзания и как сворачивается человеческая кровь.
Сначала о незамерзающей рыбе. Рыбы семейства нототениевых выживают при температурах ниже точки замерзания воды благодаря естественному антифризу в крови. Их печень вырабатывает особый белок, который связывается с поверхностью микроскопических ледяных кристаллов и блокирует их рост. Благодаря этому антифризу нототениевые прекрасно чувствуют себя в антарктических водах; на данный момент в семействе известно 94 вида, и каждый год обнаруживаются новые.
Производство антифриза — сложный процесс, а без него нототениевые непременно погибли бы. Но сложность процесса не означает, что он не мог появиться в результате эволюции. Биохимик Ци-Хин Чэн вместе с другими исследователями из Университета Иллинойса обнаружила некоторые данные, позволяющие представить, как мог появиться в процессе эволюции антифризный ген. Ученые выяснили, что ген этот сильно напоминает другой ген, представленный не в печени, а в поджелудочной железе. Там он вырабатывает пищеварительный фермент, который затем поступает в кишечник. Чэн обнаружила, что инструктаж по производству антифризных молекул содержится в последовательности из девяти оснований, которая повторяется в одном гене десятки раз. (Многократный повтор позволяет одному гену вырабатывать сразу много антифриза.) Оказалось, что эта же последовательность имеется и в составе гена, отвечающего за пищеварительный фермент. Единственная причина, по которой ген фермента не производит антифриз, состоит в том, что эта последовательность находится в части так называемой «избыточной ДНК», которая вырезается из гена, прежде чем по нему начинает строиться белок.
Чэн обнаружила и другие черты сходства между генами антифриза и пищеварительного фермента. В начале каждого из них есть последовательность, играющая роль транспортной этикетки, предписывающей клетке выделить белок, а не накапливать его внутри. Кстати говоря, эти этикетки почти полностью совпадают. А в конце каждого из генов есть команда клетке прекратить трансляцию ДНК в РНК; эти последовательности тоже почти совпадают.
Выяснив все это, Чэн разработала гипотезу происхождения гена, ответственного за антифриз. В какой-то момент в далеком прошлом ген пищеварительного фермента случайно был продублирован. Первоначальный экземпляр продолжал вырабатывать свой фермент, а лишняя копия претерпела несколько мутаций. Во-первых, интересующая нас последовательность из девяти оснований сдвинулась в другую часть гена, где ее перестали вырезать как избыточную и где она начала вырабатывать собственный белок — антифриз. Позже дополнительные мутации продублировали эту последовательность еще несколько раз, так чтобы ген мог производить больше белка-антифриза. Одновременно с увеличением антифризной части гена первоначальная часть, отвечавшая за производство фермента, исчезла. Со временем от старого гена остались только транспортная этикетка в начале и сигнал прекращения трансляции в конце.