Читаем Этот «цифровой» физический мир полностью

Однако оказалось, что результаты наблюдений противоречат этой теоретической зависимости. Аномалии в свободном воздухе почти не выходят за пределы ±50 мГал, а огромное большинство аномалий вообще близко к нулю. В то же время аномалии Буге в горных районах оказываются, как правило, отрицательными и довольно значительными по величине. Так, в западном Тибете, Памире, Куэнь-Луне аномалии Буге колеблются в пределах от –250 мГал до –550 мГал, в Мексиканском нагорье достигают –200 мГал, в Альпах –150 мГал. Напротив, в Атлантическом и Тихом океанах они имеют положительные значения от 300 до 400 мГал. »

«…длинные полосы отрицательных аномалий… прослеживаются вдоль западного берега Южной и Центральной Америки, вдоль Алеутской островной дуги,… вдоль внешнего края дуги Суматра-Ява, вдоль Пуэрто-Рико, по дуге Южных Сандвичевых островов… Всюду эти аномалии или совпадают с глубоководными желобами, или идут по их краю».

Таким образом, имеет место чёткая закономерность: если при гравиметрической съёмке не вводить поправок на влияние поверхностных масс, а использовать только поправку «за свободный воздух», то аномалии силы тяжести везде становятся близкими к нулю. Но считается, что поверхностные массы не могут не оказывать влияния на гравиметр, поэтому вычисляются и вносятся поправки, которые и дают аномалии, равные по величине этим поправкам. А затем, чтобы обнулить аномалии и привести теоретические значения в согласие с измеренными, применяют всё ту же остроумную гипотезу об изостазии.

Думаете, не может быть такого плачевного состояния дел в науке? Может, может. А вот чего не может быть – так это изостатической компенсации. И по очень простой причине. Вот, пусть под поверхностью грунта находится локальное включение с повышенной плотностью, а под ним – компенсирующее включение с пониженной плотностью. Заметим, что если сила тяжести над этими включениями равна силе тяжести над участком с нормальной плотностью, то в стороне от этих включений компенсация уже не имеет места: изостатический диполь «притягивает» иначе, чем аналогичный участок с нормальной плотностью, что должно вызвать соответствующее уклонение отвеса. При заданном неоднородном распределении поверхностных масс, никаким распределением компенсирующих масс нельзя добиться сразу и нулевых уклонений отвеса, и нулевых аномалий силы тяжести: изостазия для отвесов и изостазия для гравиметров - несовместимы. На практике же повсеместно нулевые уклонения отвеса наблюдаются вместе с нулевыми аномалиями силы тяжести (если не вводить излишних поправок). Т.е. практика с полной очевидностью показывает: гравиметрические инструменты не реагируют на распределение масс. А почему? Наука до сих пор не выработала ответа на этот вопрос. А мы отвечаем: потому что массы не обладают притягивающим действием.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука