А нас ещё уверяют, что результат Кавендиша был впоследствии неоднократно повторён его последователями! Вот интересно: если в первом результате желаемое выдавалось за действительное, то могло ли быть по-другому в его повторениях? Многие из статей последователей Кавендиша труднодоступны, а по их комментариям в специализированных обзорах, например, в [С1], невозможно проследить происхождение итоговых цифр. Недомолвки характерны и для тех статей [Р1,Л1,К1], с которыми нам удалось ознакомиться. А вот показательная статья [С2], авторы которой повторяли опыт Кавендиша на прецизионной установке в ГАИШе – и, якобы, обнаружили притяжение лабораторных болваночек в полном согласии с законом всемирного тяготения. Только загвоздка в том, что это притяжение не обнаруживается напрямую, и для «полного согласия» авторам пришлось прибегнуть к методу оптимизации многих параметров. Этот метод – настоящая находка! Он позволяет высоконаучно доказывать наличие эффектов, которые не существуют в действительности. Это делается так. Записывают навороченные, со множеством параметров, дифференциальные уравнения, в которых – это ключевой момент! – желаемый эффект учитывается так, как будто он существует. Получают экспериментальные данные. А затем, с помощью быстродействующего компьютера, проводят процедуру оптимизации – подгоняя значения параметров для наилучшего согласия теории, где желаемый эффект есть, с практикой, где желаемого эффекта нет. После этого считают, что получено наилучшее согласие теории с опытом – налицо же оптимизация, как ни крути. Во времена Кавендиша о таких мощных методах познания даже не мечтали!
Но вот – необычная статья [Г2]. В ней авторы достаточно подробно изложили, что и как они делали. Схематическое изображение их установки мы воспроизводим на
Вот, смотрите. Допустим, что элементы объёма пластинки и вправду притягиваются к шарам. Тогда действующий на пластинку крутящий момент будет обращаться в нуль, когда плоскость пластинки будет либо параллельна к плоскости шаров, либо перпендикулярна к ней. Но максимальные значения крутящего момента будут достигаться не точно посередине между нулями – они будут сдвинуты к нулям, соответствующим параллельным положениям плоскостей пластинки и шаров. Мы не поленились и выполнили соответствующее математическое моделирование для реальной геометрии установки [Г2]. Оказалось, что стягивания-растягивания результирующей синусоиды должны быть заметны даже невооружённым глазом – и уж тем более с использовавшимся энкодером, имевшим разрешение в 100 шагов на градус. Но экспериментальный график в [Г2] представляет собой
Рис.2.2