Вот интересно: при том, что попытки профессиональных экспериментаторов обнаружить гравитационное притяжение между лабораторными болваночками представляли собой сплошные проколы, фирма PASCO [П4] наладила выпуск настольных установок «для повторения фундаментального эксперимента Кавендиша». Похоже, руководители этой фирмы полагают, что, приобретя их игрушку, любая домохозяйка утрёт нос всем горе-профессионалам. Ведь в Инструкции по применению [П5] приводится аж три способа измерения гравитационной постоянной! Впрочем, один из них основан на том же трюке, что и у Кавендиша: смена позиций «притягивающих» шаров производится при подходящей фазе колебаний коромысла крутильных весов, отчего происходит сдвиг положения равновесия коромысла – причём, в нужную сторону. Зато ещё два способа работают благодаря вращательным уклонениям местной вертикали – феномену, который официальная наука не признаёт, поскольку он убийственен для закона всемирного тяготения. Мы вернёмся к этому вопросу в 2.15.
2.3. О чём говорит нам форма геоида.
Если бы Земля была однородным шаром, то, согласно закону всемирного тяготения, гравитационная сила, действующая на пробное тело вблизи поверхности Земли, зависела бы лишь от расстояния до её центра. Но Земля является сплюснутым эллипсоидом, имея так называемую «экваториальную выпуклость». Экваториальный радиус Земли равен приблизительно 6378.2 км, а полярный – 6356.8 км [А1]. Из-за одного того, что экваториальный радиус Земли больше полярного, гравитационная сила на экваторе должна быть несколько меньше, чем на полюсе. Причём, считается, что форма геоида является гидродинамически равновесной, т.е. что экваториальная выпуклость образовалась не без помощи центробежных сил, обусловленных собственным вращением Земли. Если найти приращение
А теперь обратим внимание на то, что в расчётах мы не учитывали гравитационное действие вещества, находящегося в объёме экваториальной выпуклости – это действие, имей оно место, было бы отнюдь не одинаково при гравиметрических измерениях на экваторе и на полюсе. При гравиметрических измерениях на полюсе, действие всей экваториальной выпуклости было бы на порядок меньше, чем действие небольшой характерной части экваториальной выпуклости, прилегающей к точке проведения измерений на экваторе. Поэтому, из-за наличия экваториальной выпуклости, сила тяжести на экваторе была бы дополнительно увеличена по сравнению с силой тяжести на полюсе – и, значит, равновесное увеличение экваториального радиуса
Таким образом, если экваториальная выпуклость обладала бы притягивающим действием, то гидродинамически равновесная форма геоида заметно отличалась бы от фактической. Но эти заметные отличия не наблюдаются. Отсюда мы делаем вывод: сотни триллионов тонн вещества экваториальной выпуклости Земли не обладают притягивающим действием.
Этот поразительный, «лежащий на поверхности» вывод до сих пор никто не оспорил. Разве что баллистики, которые рассчитывают движение искусственных спутников Земли, уверяли нас, что они учитывают, в своих расчётах, гравитационное действие экваториальной выпуклости. Ну, что тут поделаешь. Мы-то знаем, что при оптимизации многих параметров именно это и делают: учитывают несуществующие эффекты. Всё нормально!
2.4. Оглушительные результаты гравиметрических измерений.
Поверхностные массы Земли распределены неоднородно. Там есть мощные горные массивы, с плотностью пород около трёх тонн на кубометр. Есть океаны, в которых плотность воды составляет всего тонну на кубометр – даже на глубине в 11 километров. Есть долины, лежащие ниже уровня моря – в которых плотность вещества равна плотности воздуха. По логике закона всемирного тяготения, эти неоднородности распределения масс должны действовать на гравиметрические инструменты.