Читаем Этюды о Вселенной полностью

Следовательно, если мы говорим, что атом остановился на дне рва, да еще точно задаем его положение, то тем самым констатируем неопределенность его скорости. При большой величине m еще можно обойти возникшую трудность, отказавшись от точного задания положения атома и уменьшив таким образом его скорость. Если же, однако, масса от мала, как в случае атома гелия, то попытки ограничить его местонахождение областью притяжения в конце концов придадут атому достаточную скорость и, следовательно, энергию, чтобы из этой самой зоны выйти.

Сверхтекучесть

По этой причине решетка атомов гелия не образуется, и он не затвердевает, если только не заставить атомы проделать это насильно, сжав гелий до давления 25 атм. и более. При охлаждении гелий превращается в жидкость, а при дальнейшем понижении температуры наблюдается поразительное явление – переход к сверхтекучему состоянию, не имеющему аналогов ни в одной другой системе, за исключением, быть может, ядерной жидкости в нейтронных звездах да еще сверхпроводников. Переход от нормального состояния к состоянию «сверхжидкости» представляет собой исключительное зрелище.

Нормально жидкий гелий непрерывно поглощает тепло от стенок сосуда, в котором находится; при этом он бурно кипит, как вода в кастрюле. При достижении так называемой λ-точки, т.е. 2,17 градусов Кельвина, гелий вдруг перестает кипеть, хотя и продолжает интенсивно испаряться. Дальше такая жидкость может течь без видимых следов вязкости (отсюда и название – сверхтекучесть), проходя беспрепятственно через очень маленькие отверстия и капилляры. Что же происходит в λ-точке? Мы попытаемся дать доступный ответ на этот вопрос.

Статистика Бозе-Эйнштейна

Вспомним, что элементарные частицы делятся на две большие категории, на фермионы и бозоны. Электрон и нуклоны относятся к первым, а фотон и пионы – ко вторым. Соединяя вместе два фермиона, мы получим бозон, один бозон и один фермион дадут фермион, и, наконец, объединив два бозона, мы получим бозон. Другими словами, если считать фермионы «нечетными», а бозоны «четными» и рассматривать объединенные частицы, как сумму фермионов и бозонов, то мы как раз получим описанные правила, из которых, кстати, следует, что атом гелия представляет собой бозон. Действительно, он содержит два электрона, два протона и два нейтрона. Говорят также, что бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – статистике Ферми-Дирака; в основе этих утверждений лежит следующий эмпирический факт.

Мы знаем, что все частицы определенного сорта (например, электроны) абсолютно неразличимы; поменяв два электрона местами, мы получим физическое состояние, которое не только практически не отличается от начального, но даже считается совпадающим с ним. Это утверждение справедливо как для бозонов, так и для фермионов. Фермионы еще подчиняются принципу исключения Паули, запрещающему двум одинаковым фермионам находиться в одном и том же состоянии.

Возвращаясь к бозонам, мы видим, что правила статистики (например, то, что состояния, отличающиеся обменом двух или более одинаковых бозонов, считаются одинаковыми) приводят к любопытным последствиям. Представим, что мы имеем два бозона а и В, и рассмотрим два разных состояния, обозначенные скобками. Мы можем помещать свои бозоны в то или иное состояние (скобки). Итак, запись (А) (В) указывает, что в первом состоянии находится бозон А, а во втором – В. Можно составить следующие четыре разные комбинации: (АВ) (), (А) (В), (В) (А), () (АВ). Если, однако, частицы а и в одинаковы, то две средние комбинации неразличимы, и мы получим всего три возможных состояния. Мы видим, что доля случаев, когда одинаковые частицы находятся вместе, увеличилась с одной второй до двух третей. Это, кажется, мало, но при переходе к очень большому количеству частиц выигрыш увеличивается и благоприятствует собиранию одинаковых бозонов в одном состоянии, что в некотором смысле противоположно принципу исключения Паули.

Следовательно, если в каком-либо состоянии имеется бозон, то вероятность найти в этом же состоянии еще бозоны заранее возрастает.

Далее, все атомы гелия представляют собой одинаковые бозоны, следовательно, они стремятся оказаться в одном и том же состоянии. Если бы отсутствовали силы взаимодействия между атомами и атомы были совершенно прозрачны друг для друга, то наблюдалась бы так называемая конденсация Бозе-Эйнштейна: при абсолютном нуле все атомы обрели бы минимальную скорость, допустимую соотношением неопределенности Гейзенберга. Поскольку местонахождение атома ограничено только тем, что он находится внутри сосуда с жидкостью, то неопределенность в его положении может достигать размеров этого сосуда, в то время как неопределенность в скорости при этом окажется очень небольшой. Следовательно, все атомы попали бы в одно и то же состояние абсолютного покоя, их положение в сосуде стало бы совершенно неопределенно, атомы с равной вероятностью могли бы находиться в любом месте.

Взаимодействие между атомами гелия

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука