Следовательно, если мы говорим, что атом остановился на дне рва, да еще точно задаем его положение, то тем самым констатируем неопределенность его скорости. При большой величине
Сверхтекучесть
По этой причине решетка атомов гелия не образуется, и он не затвердевает, если только не заставить атомы проделать это насильно, сжав гелий до давления 25 атм. и более. При охлаждении гелий превращается в жидкость, а при дальнейшем понижении температуры наблюдается поразительное явление – переход к сверхтекучему состоянию, не имеющему аналогов ни в одной другой системе, за исключением, быть может, ядерной жидкости в нейтронных звездах да еще сверхпроводников. Переход от нормального состояния к состоянию «сверхжидкости» представляет собой исключительное зрелище.
Нормально жидкий гелий непрерывно поглощает тепло от стенок сосуда, в котором находится; при этом он бурно кипит, как вода в кастрюле. При достижении так называемой λ-точки, т.е. 2,17 градусов Кельвина, гелий вдруг перестает кипеть, хотя и продолжает интенсивно испаряться. Дальше такая жидкость может течь без видимых следов вязкости (отсюда и название – сверхтекучесть), проходя беспрепятственно через очень маленькие отверстия и капилляры. Что же происходит в λ-точке? Мы попытаемся дать доступный ответ на этот вопрос.
Статистика Бозе-Эйнштейна
Вспомним, что элементарные частицы делятся на две большие категории, на фермионы и бозоны. Электрон и нуклоны относятся к первым, а фотон и пионы – ко вторым. Соединяя вместе два фермиона, мы получим бозон, один бозон и один фермион дадут фермион, и, наконец, объединив два бозона, мы получим бозон. Другими словами, если считать фермионы «нечетными», а бозоны «четными» и рассматривать объединенные частицы, как сумму фермионов и бозонов, то мы как раз получим описанные правила, из которых, кстати, следует, что атом гелия представляет собой бозон. Действительно, он содержит два электрона, два протона и два нейтрона. Говорят также, что бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – статистике Ферми-Дирака; в основе этих утверждений лежит следующий эмпирический факт.
Мы знаем, что все частицы определенного сорта (например, электроны) абсолютно неразличимы; поменяв два электрона местами, мы получим физическое состояние, которое не только практически не отличается от начального, но даже считается совпадающим с ним. Это утверждение справедливо как для бозонов, так и для фермионов. Фермионы еще подчиняются принципу исключения Паули, запрещающему двум одинаковым фермионам находиться в одном и том же состоянии.
Возвращаясь к бозонам, мы видим, что правила статистики (например, то, что состояния, отличающиеся обменом двух или более одинаковых бозонов, считаются одинаковыми) приводят к любопытным последствиям. Представим, что мы имеем два бозона а и В, и рассмотрим два разных состояния, обозначенные скобками. Мы можем помещать свои бозоны в то или иное состояние (скобки). Итак, запись (А) (В) указывает, что в первом состоянии находится бозон А, а во втором – В. Можно составить следующие четыре разные комбинации: (АВ) (), (А) (В), (В) (А), () (АВ). Если, однако, частицы а и в одинаковы, то две средние комбинации неразличимы, и мы получим всего три возможных состояния. Мы видим, что доля случаев, когда одинаковые частицы находятся вместе, увеличилась с одной второй до двух третей. Это, кажется, мало, но при переходе к очень большому количеству частиц выигрыш увеличивается и благоприятствует собиранию одинаковых бозонов в одном состоянии, что в некотором смысле противоположно принципу исключения Паули.
Следовательно, если в каком-либо состоянии имеется бозон, то вероятность найти в этом же состоянии еще бозоны заранее возрастает.
Далее, все атомы гелия представляют собой одинаковые бозоны, следовательно, они стремятся оказаться в одном и том же состоянии. Если бы отсутствовали силы взаимодействия между атомами и атомы были совершенно прозрачны друг для друга, то наблюдалась бы так называемая конденсация Бозе-Эйнштейна: при абсолютном нуле все атомы обрели бы минимальную скорость, допустимую соотношением неопределенности Гейзенберга. Поскольку местонахождение атома ограничено только тем, что он находится внутри сосуда с жидкостью, то неопределенность в его положении может достигать размеров этого сосуда, в то время как неопределенность в скорости при этом окажется очень небольшой. Следовательно, все атомы попали бы в одно и то же состояние абсолютного покоя, их положение в сосуде стало бы совершенно неопределенно, атомы с равной вероятностью могли бы находиться в любом месте.
Взаимодействие между атомами гелия