Читаем Этюды о Вселенной полностью

Кроме самого Эйнштейна попытки создать единую теорию были предприняты еще в 1919 г. математиком Вейлем. Чтобы дать об этом некоторое представление (пусть даже неполное), я расскажу о понятии кривизны в общей теории относительности.

Гауссова кривизна

Применительно к линии на плоскости смысл понятия кривизны очевиден. Так, прямая линия не имеет кривизны, в то время как кривизна окружности постоянна. в общем случае кривизна линии меняется от точки к точке.

Физиков, однако, интересуют не только простые геометрические фигуры. Так, больший интерес вызывает рассмотренный Гауссом случай поверхности в. трехмерном пространстве. Почему? Как известно, кривую линию на плоскости всегда можно выпрямить, не растягивая и не укорачивая ее. Если же взять сферическую поверхность, то какой бы маленький кусок ее мы ни пытались уложить на плоскость, нам все равно пришлось бы его вытянуть, сломать или еще как-то деформировать. Таким образом, сфере присуще особое внутреннее свойство, отличающее ее от плоскости, а именно кривизна, выражающая само геометрическое существо и не зависящая от способа построения сферы в трехмерном пространстве.

Нарисовав треугольник на поверхности Земли, мы обнаружим заметное отличие его свойств от свойств треугольника на плоскости: сумма углов последнего в точности равна 180° (π радиан). Если же начертить треугольник с вершинами на Северном полюсе, в городах Кито (Эквадор) и Либревиль (Габон), то получится треугольник с тремя прямыми углами, сумма которых будет равна 270°!

Такое расхождение не позволяет печатать достоверных земных атласов на плоских листах. Кстати, согласно известной теореме сферической геометрии, сумма внутренних углов треугольника α, β, γ, σменьшенная на 180°, пропорциональна площади треугольника:

α + β + γ – π = Οлощадь / (Радиус сферы)2 = A / R2

В этой формуле все углы берутся в радианах. в случае рассмотренного земного треугольника мы, кстати, имеем

α = β = γ = 90° = π/2

оттуда

A = R2 (3π/2 – π) = πR2/2 = 4πR2/8

Площадь, как мы видим, становится равной одной восьмой всей сферической поверхности. Действительно, треугольник с тремя прямыми углами занимает один октант сферы. Приведенную формулу можно представить в следующем виде:

1 / R2 = (α + β + γ – π) / Площадь

по этой формуле можно вычислить 1/R2, т.е. «гауссову кривизну», зная площадь треугольника и его углы, т.е. величины, которые можно измерить, просто гуляя по Земле, не привлекая никаких сведений о внешнем пространстве.

Все эти представления были обобщены Риманом на случай пространств любой размерности; тогда место величины 1/R2 занимает знаменитый тензор Римана, учитывающий изменение кривизны по всем направлениям.

Кривизна и материя

Выдающаяся идея Эйнштейна состояла в том, чтобы связать эту кривизну с распределением вещества в пространстве. Согласно Эйнштейну, пространство обладает кривизной, а мы до сих пор ее не замечали, потому что она мала и проявляется только через гравитационные эффекты.

Особенно наглядной является картина пространства, предложенная Эддингтоном. Он сравнивал пространство с хорошо натянутым эластичным полотнищем, которое в нормальном состоянии лежит целиком в плоскости. Если положить на полотнище тяжелые шары (символизирующие небесные тела), то оно искривится, изменив при этом свою геометрию. Каждый из двух находящихся рядом шаров стремится скатиться в яму, образованную соседом. Так, через посредство полотнища между шарами появляется сила взаимодействия, аналогичная силе тяготения. Действительно, в общей теории относительности силы тяготения возникают за счет искривления окружающего пространства. Между кривизной пространства и распределением вещества существует соотношение вида 1/R2 = (G/c2)·ρ.

В этой формуле G представляет универсальную гравитационную постоянную, с – скорость света (около 300000 км/с), и G/c2 приблизительно равно 10...27 см/г. Плотность ρ измеряется в граммах на кубический сантиметр, так что правая часть соотношения измеряется в см–2, как и кривизна. Приведенная формула, по существу, представляет собой основной результат, полученный из уравнений поля Эйнштейна (если не считать длинного ряда тензорных индексов, от перечисления которых мы избавим читателя). Плотность воды соответствует кривизне R, равной примерно 100 млн. км. Таков радиус сферы, которую должна заполнить вода (если бы она была несжимаема), чтобы стать гравитационно-нестабильной и коллапсировать в черную дыру.

Параллельный перенос Леви-Чивита

Итальянскому математику Леви-Чивита пришла в голову гениальная идея, как объяснить и описать кривизну. Эта идея оказалась источником разнообразных обобщений и была использована выдающимся французским математиком Картаном.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука