Кроме самого Эйнштейна попытки создать единую теорию были предприняты еще в 1919 г. математиком Вейлем. Чтобы дать об этом некоторое представление (пусть даже неполное), я расскажу о понятии кривизны в общей теории относительности.
Гауссова кривизна
Применительно к линии на плоскости смысл понятия кривизны очевиден. Так, прямая линия не имеет кривизны, в то время как кривизна окружности постоянна. в общем случае кривизна линии меняется от точки к точке.
Физиков, однако, интересуют не только простые геометрические фигуры. Так, больший интерес вызывает рассмотренный Гауссом случай поверхности в. трехмерном пространстве. Почему? Как известно, кривую линию на плоскости всегда можно выпрямить, не растягивая и не укорачивая ее. Если же взять сферическую поверхность, то какой бы маленький кусок ее мы ни пытались уложить на плоскость, нам все равно пришлось бы его вытянуть, сломать или еще как-то деформировать. Таким образом, сфере присуще особое внутреннее свойство, отличающее ее от плоскости, а именно кривизна, выражающая само геометрическое существо и не зависящая от способа построения сферы в трехмерном пространстве.
Нарисовав треугольник на поверхности Земли, мы обнаружим заметное отличие его свойств от свойств треугольника на плоскости: сумма углов последнего в точности равна 180° (π радиан). Если же начертить треугольник с вершинами на Северном полюсе, в городах Кито (Эквадор) и Либревиль (Габон), то получится треугольник с тремя прямыми углами, сумма которых будет равна 270°!
Такое расхождение не позволяет печатать достоверных земных атласов на плоских листах. Кстати, согласно известной теореме сферической геометрии, сумма внутренних углов треугольника α, β, γ, σменьшенная на 180°, пропорциональна площади треугольника:
α + β + γ – π = Οлощадь / (Радиус сферы)2 =
В этой формуле все углы берутся в радианах. в случае рассмотренного земного треугольника мы, кстати, имеем
α = β = γ = 90° = π/2
оттуда
Площадь, как мы видим, становится равной одной восьмой всей сферической поверхности. Действительно, треугольник с тремя прямыми углами занимает один октант сферы. Приведенную формулу можно представить в следующем виде:
1 /
по этой формуле можно вычислить 1/
Все эти представления были обобщены Риманом на случай пространств любой размерности; тогда место величины 1/
Кривизна и материя
Выдающаяся идея Эйнштейна состояла в том, чтобы связать эту кривизну с распределением вещества в пространстве. Согласно Эйнштейну, пространство обладает кривизной, а мы до сих пор ее не замечали, потому что она мала и проявляется только через гравитационные эффекты.
Особенно наглядной является картина пространства, предложенная Эддингтоном. Он сравнивал пространство с хорошо натянутым эластичным полотнищем, которое в нормальном состоянии лежит целиком в плоскости. Если положить на полотнище тяжелые шары (символизирующие небесные тела), то оно искривится, изменив при этом свою геометрию. Каждый из двух находящихся рядом шаров стремится скатиться в яму, образованную соседом. Так, через посредство полотнища между шарами появляется сила взаимодействия, аналогичная силе тяготения. Действительно, в общей теории относительности силы тяготения возникают за счет искривления окружающего пространства. Между кривизной пространства и распределением вещества существует соотношение вида 1/
В этой формуле G представляет универсальную гравитационную постоянную,
Параллельный перенос Леви-Чивита
Итальянскому математику Леви-Чивита пришла в голову гениальная идея, как объяснить и описать кривизну. Эта идея оказалась источником разнообразных обобщений и была использована выдающимся французским математиком Картаном.