Читаем Этюды о Вселенной полностью

Поэтому надо очень осторожно относиться к появляющимся иногда в средствах массовой информации сенсационным сообщениям, не прошедшим строгой проверки. Трактовка таких сомнительных сведений может привести к ошибочным выводам. Впрочем, хотя призыв к осторожности, конечно, уместен, тем не менее надо отметить, что в настоящее время наблюдается интересный процесс обновления научных исследований и бурление всевозможных оригинальных идей в области объединения теорий. После смерти Эйнштейна многочисленные неудачи, преувеличенный академизм некоторых научных публикаций определенного сорта привели к падению интереса и доверия к усилиям, предпринимающимся на полном приключений пути к объединению. События последних двадцати пяти лет вдохнули новую жизнь в этот процесс. Нужно упомянуть среди них техническую революцию, позволившую осуществить ранее немыслимые способы проверки теории относительности.

Многообещающи в этом смысле результаты, достигнутые в исследовании элементарных частиц. Весьма вероятно, что в течение последующих пяти или десяти лет мы окажемся свидетелями выдающихся успехов: частичное объединение теорий слабых и электромагнитных взаимодействий, осуществленное Саламом и Вайнбергом, указывает, что какое-то движение происходит, и происходит оно в правильном направлении.

8. Сверхтекучесть

Газ гелий

Впервые газ гелий был обнаружен на Солнце с помощью спектроскопии, и его название происходит от греческого слова helios (Солнце). на Земле гелий добывается из некоторых месторождений метана и используется в основном для наполнения дирижаблей, поскольку он, как и водород, легче воздуха и в отличие от него не горит. Будь это единственным отличительным свойством гелия, он мог бы всего лишь возбудить любопытство, не заслужив особого интереса. Однако с точки зрения физиков гелий обладает свойствами исключительными и важными.

Любой газ при охлаждении сначала превращается в жидкость, затем при дальнейшем охлаждении затвердевает. Гелий же в твердое состояние не переходит; жидким он становится при температуре, равной примерно четырем градусам выше абсолютного нуля (–269°С), т.е. при четырех градусах Кельвина (4 К), и дальше, сколько его ни охлаждать, он остается жидкостью. Почему же гелий так себя ведет?

Атомы газа можно сравнить с множеством шариков, испытывающих слабое взаимное притяжение, пока расстояния между ними больше определенной минимальной величины; при приближении друг к другу на это минимальное расстояние атомы начинают себя вести, как жесткие шары, и дальнейшее их взаимное сближение становится невозможным. Если бы атомы могли свободно следовать силам взаимного притяжения, то расстояния между ними сокращались до некоторого минимального значения, при котором атомы, объединившись, образовали компактную структуру (твердый кристалл), в котором они были бы расположены вдоль упорядоченных линий. Это происходит при охлаждении жидкости, когда атомы лишаются своей энергии и движение их замедляется.

Атомы гелия подобны атомам других так называемых благородных газов (неон, аргон, криптон, ксенон), которые имеют абсолютно сферическую форму, испытывают слабое притяжение и практически не способны образовать химические связи. Кроме того, атомы гелия в пять раз легче атомов неона, остальные благородные газы еще тяжелее неона. Ядро гелия состоит всего из двух нейтронов и двух протонов, в то время как ядра атомов неона состоят из двадцати нейтронов и протонов.

Роль соотношения неопределенности

Поле силы, создаваемое атомом, можно сравнить со рвом, окружающим его, а сам атом – с тонкой, чрезвычайно высокой скалой, возвышающейся в центре. в этой аналогии потенциальная энергия в какой-то точке – это просто ее высота над окружающей равниной. Следовательно, ров соответствует отрицательной энергии (притяжение), в то время как скала соответствует энергии положительной (отталкивание). Другой, соседний, атом похож на шарик, который может катиться вниз по подножию скалы, пока не остановится в самой низкой точке (минимальная энергия). Каждый атом «перекатывается» в поле других, пока не остановится в точке, соответствующей наименьшей энергии. Но действительно ли останавливается атом? Если бы мы говорили о макроскопических шариках, сомнений не было бы: потеряв свою энергию, шарик остановится.

Атомы гелия, однако, имеют очень небольшую массу та, из-за чего вступает в силу соотношение неопределенности Гейзенберга.

Это соотношение ограничивает точность, с которой можно измерить положение или скорость частицы. Оно утверждает, что:

(Ошибка в скорости) × (Ошибка в положении) ≥ h / m

(h представляет собой универсальную постоянную Планка, появляющуюся в квантовой теории: h = 6,626·10–27 эрг·с; как уже было сказано, она выражает, например, пропорциональность между энергией фотона E и его частотой ν: E = ).

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука