Читаем Эффективное использование STL полностью

Чтобы данные постоянно находились в отсортированном состоянии, сохраните их в стандартном ассоциативном контейнере. Стоит также рассмотреть возможность использования стандартного контейнера priority_queue, данные которого тоже хранятся в отсортированном виде (контейнер priority_queue традиционно считается частью STL, но, как упоминалось в предисловии, в моем определении «контейнер STL» должен поддерживать итераторы, тогда как контейнер priority_queue их не поддерживает).

«А что можно сказать о быстродействии?» — спросите вы. Хороший вопрос. В общем случае время работы алгоритма зависит от объема выполняемой работы, а алгоритмам стабильной сортировки приходится выполнять больше работы, чем алгоритмам, игнорирующим фактор стабильности. В следующем списке алгоритмы, описанные в данном совете, упорядочены по возрастанию затрачиваемых ресурсов (времени и памяти):

1. partition;

2. stable_partition;

3. nth_element;

4. partial_sort;

5. sort;

6. stable_sort.

При выборе алгоритма сортировки я рекомендую руководствоваться целью, а не соображениями быстродействия. Если выбранный алгоритм ограничивается строго необходимыми функциями и не выполняет лишней работы (например, partition вместо полной сортировки алгоритмом sort), то программа будет не только четко выражать свое предназначение, но и наиболее эффективно решать поставленную задачу средствами STL.

<p>Совет 32. Сопровождайте вызовы remove-подобных алгоритмов вызовом erase</p>

Начнем с краткого обзора remove, поскольку этот алгоритм вызывает больше всего недоразумений в STL. Прежде всего необходимо рассеять все сомнения относительно того, что делает алгоритм remove, а также почему и как он это делает.

Объявление remove выглядит следующим образом:

template

ForwardIterator remove(ForwardIterator first, ForwardIterator last, const T& value);

Как и все алгоритмы, remove получает пару итераторов, определяющих интервал элементов, с которыми выполняется операция. Контейнер при вызове не передается, потому remove не знает, в каком контейнере находятся искомые элементы. Более того, remove не может самостоятельно определить этот контейнер, поскольку не существует способа перехода от итератора к контейнеру, соответствующему ему.

Попробуем разобраться, как происходит удаление элементов из контейнера. Существует только один способ — вызов соответствующей функции контейнера, почти всегда некоторой разновидности erase (контейнер list содержит пару функций удаления элементов, имена которых не содержат erase). Поскольку удаление элемента из контейнера может производиться только вызовом функции данного контейнера, а алгоритм remove не может определить, с каким контейнером он работает, значит, алгоритм remove не может удалять элементы из контейнера. Этим объясняется тот удивительный факт, что вызов remove не изменяет количества элементов в контейнере:

vector v;             // Создать vector и заполнить его

v.reserve(10);             // числами 1-10 (вызов reserve описан

for (int i=1; i<=10; ++i){ // в совете 14)

 v.push_back(i);

};

cout << v.size;               // Выводится число 10

v[3]=v[5]=v[9]=99;              // Присвоить 3 элементам значение 99

remove(v.begin, v.end, 99); // Удалить все элементы со значением 99

cout << v.size;               // Все равно выводится 10!

Чтобы понять смысл происходящего, необходимо запомнить следующее: Алгоритм remove «по настоящему» ничего не удаляет, потому что не может. На всякий случай повторю: …потому что не может!

Алгоритм remove не знает, из какого контейнера он должен удалять элементы, а без этого он не может вызвать функцию «настоящего» удаления.

Итак, теперь вы знаете, чего алгоритм remove сделать не может и по каким причинам. Остается понять, что же он все-таки делает.

В общих чертах remove перемещает элементы в заданном интервале до тех пор, пока все «оставшиеся» элементы не окажутся в начале интервала (с сохранением их относительного порядка). Алгоритм возвращает итератор, указывающий на позицию за последним «оставшимся» элементом. Таким образом, возвращаемое значение можно интерпретировать как новый «логический конец» интервала.

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT