Читаем Эффективное использование STL полностью

Есть два вектора, v1 и v2. Как проще всего заполнить v1 содержимым второй половины v2? Только не надо мучительно размышлять над тем, что считать «половиной» при нечетном количестве элементов в v2. Просто постарайтесь быстро дать разумный ответ.

Время истекло! Если вы предложили

v1.assign(v2.begin+v2.size/2, v2.end)

или нечто похожее — поздравляю, пять баллов. Если в вашем ответе присутствуют вызовы более чем одной функции, но при этом он обходится без циклов, вы получаете «четверку». Если в ответе задействован цикл, вам есть над чем поработать, а если несколько циклов — значит, вы узнаете из этой книги много нового.

Кстати говоря, если при чтении ответа вы произнесли «Чего-чего?» или что-нибудь в этом роде, читайте внимательно, потому что речь пойдет об очень полезных вещах.

Я привел эту задачу по двум причинам. Во-первых, она напоминает вам о существовании очень удобной функции assign, о которой многие программисты попросту забывают. Функция assign поддерживается всеми стандартными последовательными контейнерами (vector, string, deque и list). Каждый раз, когда вам требуется полностью заменить содержимое контейнера, подумайте, нельзя ли добиться желаемой цели присваиванием. Если вы просто копируете один контейнер в другой контейнер того же типа, задача решается функцией operator=. Но, как показывает приведенный пример, существует также функция assign, которая позволяет заполнить контейнер новыми данными в тех случаях, когда operator= не подходит.

Во-вторых, эта задача показывает, почему интервальные функции лучше своих одноэлементных аналогов. Интервальной называется функция контейнера, которая, подобно алгоритмам STL, определяет интервал элементов для выполняемой операции при помощи двух параметров-итераторов. Без интервальной функции нам пришлось бы создавать специальный цикл:

vector v1,v2; // Предполагается, что v1 и v2 -

                      // векторы объектов Widget

v1.clear:

for (vector::const_iterator ci=v2.begin+v2.size/2; ci != v2.end; ++ci)

 v1.push_back(*ci);

В совете 43 подробно объясняется, почему использовать явные циклы не рекомендуется, но и без этого ясно, что написание этого фрагмента потребует больше усилий, чем простой вызов assign. Цикл также отрицательно влияет на быстродействие, но к этой теме мы вернемся позже.

Одно из возможных решений заключается в том, чтобы последовать совету 43 и воспользоваться алгоритмом:

v1.clear;

copy(v2.begin+v2.size/2, v2.end, back_inserter(v1));

Но и этот вариант требует больших усилий, чем простой вызов assign. Более того, хотя цикл не встречается в программе, он наверняка присутствует внутри вызова copy (см. совет 43). В результате потенциальное снижение быстродействия не исчезает (вскоре мы поговорим об этом). А сейчас я хочу ненадолго отвлечься от темы и заметить, что практически все случаи использования copy, когда приемный интервал задается итератором вставки (inserter, back_inserter или front_inserter), могут — и должны — заменяться вызовами интервальных функций. Например, вызов copy заменяется интервальной версией insert:

v1.insert(v1.end, v2.begin+v2.size/2. v2.end);

Команда получается ненамного короче, но она к тому же ясно указывает на суть происходящего: данные вставляются в v1. Вызов copy означает примерно то же, но не столь очевидно. В данном случае важно не то, что элементы копируются, а то, что в v1 добавляются новые данные. Функция insert прямо говорит об этом, а copy лишь сбивает с толку. Нет ничего особенно интересного в том факте, что данные где-то копируются, — собственно, вся библиотека STL построена на принципе копирования. Копирование играет настолько важную роль в STL, что ему посвящен совет 3.

Многие программисты STL злоупотребляют функцией copy, поэтому только что данный совет стоит повторить: вызовы copy, в которых результирующий интервал задается итератором вставки, практически всегда следует заменять вызовами интервальных функций.

Вернемся к примеру с assign. Мы уже выяснили две причины, по которым интервальным функциям отдается предпочтение перед их одноэлементными аналогами.

• Написание кода с интервальными функциями обычно требует меньших усилий.

• Решения с интервальными функциями обычно выглядят более наглядно и логично.

Короче говоря, программы с интервальными функциями удобнее как писать, так и читать. О чем тут еще говорить?

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT