Читаем Эффективное использование STL полностью

Возможно, вам потребуется пара минут на анализ конструкции bnd2nd(plus, 41), но после этого все хлопоты с итераторами сводятся к простому заданию начала и конца исходного интервала и вызову inserter при определении начала приемного интервала (см. совет 30). На практике итераторы исходного и приемного интервала обычно вычисляются относительно просто — во всяком случае, это значительно проще, чем диагностика случайного появления недействительных итераторов в теле цикла.

Данный пример убедительно показывает, что программирование циклов часто бывает связано с трудностями. Программисту приходится постоянно следить за тем, чтобы итераторы в процессе цикла не стали недействительными или с ними не были выполнены недопустимые операции. Другой пример скрытого перехода итераторов в недействительное состояние приведен при описании циклических вызовов erase в совете 9.

Применение недействительных итераторов приводит к непредсказуемым последствиям, которые редко проявляются на стадии разработки и тестирования. Так зачем идти на риск, если без этого можно обойтись? Поручите работу алгоритмам, пусть они беспокоятся о технических подробностях операций с итераторами.

Итак, я объяснил, почему алгоритмы обычно работают эффективнее «ручных» циклов и почему при работе с циклами возникают многочисленные трудности, отсутствующие при использовании алгоритмов. Если мне повезло, вы поверили в силу алгоритмов, но везение — вещь ненадежная, а я хочу окончательно разобраться в этом вопросе перед тем, как следовать дальше. Мы переходим к следующему фактору: наглядности кода. В долгосрочной перспективе принцип наглядности очень важен, поскольку наглядную программу проще понять, она проще усовершенствуется, сопровождается и адаптируется в соответствии с новыми требованиями. Циклические конструкции выглядят привычнее, но алгоритмы обладают значительными преимуществами.

Одним из ключевых преимуществ является семантическая сила стандартных имен. В STL существует 70 имен алгоритмов, с учетом перегрузки (overloading) получается более 100 различных шаблонов функций. Каждый алгоритм выполняет четко определенную задачу, и вполне логично ожидать, что профессиональный программист C++ знает эти задачи (или легко найдет нужную информацию). Таким образом, при виде вызова transform программист понимает, что некоторая функция применяется ко всем объектам в интервале, а результат куда-то записывается. При виде вызова replace_if он знает, что программа модифицирует все объекты интервала, удовлетворяющие некоторому предикату. Вызов partition наводит на мысль о том, что объекты интервала перемещаются с группировкой всех объектов, удовлетворяющих предикату (см. совет 31). Имена алгоритмов STL несут большую семантическую нагрузку и более четко выражают смысл происходящего, чем любые циклы.

При виде цикла for, while и do программист знает только одно — программа многократно выполняет некоторые действия. Чтобы получить хотя бы примерное представление о происходящем, необходимо изучить тело цикла. С алгоритмами дело обстоит иначе, сам вызов алгоритма характеризует суть происходящего. Конечно, для полноценного понимания необходимо проанализировать аргументы, передаваемые алгоритму, но обычно это требует меньшей работы, чем анализ обобщенной циклической конструкции.

Проще говоря, имена алгоритмов информативны, а ключевые слова for, while или do — нет. Впрочем, это относится практически ко всем компонентам стандартных библиотек C и C++. Никто не запрещает вам написать собственную реализацию strlen, memset или bsearch, но вы этого не делаете. Почему? Во-первых, кто-то уже сделал это за вас, и нет смысла повторять уже выполненную работу; во-вторых, имена этих функций стандартны, и все знают, что они делают; в-третьих, можно предположить, что автор библиотеки знает приемы оптимизации, недоступные для вас, и отказываться от возможного повышения эффективности было бы неразумно. А раз вы не пишете собственные версии strlen и т. д., то было бы нелогично программировать циклы, дублирующие функциональность готовых алгоритмов STL.

На этом я бы хотел завершить данный совет, поскольку финал выглядит довольно убедительно. К сожалению, тема не поддается столь однозначной трактовке.

Действительно, имена алгоритмов информативнее простых циклов, но четкая формулировка действий, выполняемых при каждой итерации, иногда бывает нагляднее вызова алгоритма. Допустим, нам потребовалось найти первый элемент вектора, значение которого лежит в заданном диапазоне . В цикле это делается так:

vector v;

int х, у;

vector::iterator i=v.begin; // Перебирать элементы, начиная

for(; i!=v.end; ++i){            // с v.begin, до нахождения нужного

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT