Эти люди рассуждают не в абсолютных характеристиках – «та компания получит прибыль в следующем квартале» или «тот стартап провалится», – а в терминах вероятностей: «компания получит прибыль с вероятностью 34 %» или «для этого стартапа риск неудачи составляет 90 %». Когда поступает новая информация – например, CEO вынужден уйти в отставку или бета-версия, выпущенная стартапом, пользуется успехом, – они корректируют эти вероятности: 34 % превращаются в 21 %, а 90 % – в 80 %.
Аналогичные истории я слышал и от Джеймса, знакомого из индустрии азартных игр. Там в ходу варианты уравнения ставок, но при таком количестве денег на кону приходится принимать быстрые решения о том, годится ли их модель для предстоящих футбольных матчей. Что делать, если за час до игры стартовый состав команды меняется и предположения, лежащие в основе модели, становятся недействительными?
– Именно в такие моменты вы узнаете, кто действительно хороший специалист, – говорил Джеймс. – Он не реагирует резко. При одном изменении в стартовом составе ставка не меняется; при двух – четырех специалист оценивает разные возможности; при пяти или больше все ставки снимаются.
Чтобы научиться думать как эти аналитики, вам нужно ставить себя в эмоционально напряженную ситуацию. К примеру, на земле большинство из нас понимают, что полеты не опасны: вероятность попасть в авиакатастрофу со смертельным исходом не превосходит 1 на 10 миллионов. Но в воздухе все ощущается иначе.
Представьте, что вы опытный путешественник, уже летавший сотню раз. Однако этот рейс иной. При снижении самолет начинает грохотать и трястись – такой болтанки вы еще не ощущали. Женщина рядом хватает воздух ртом; мужчина, сидящий через проход, стискивает колени. Все вокруг явно напуганы. Что это? Может ли разворачиваться наихудший сценарий?
В подобных ситуациях математик глубоко вдохнет и соберет всю доступную информацию. Назовем катастрофой худший сценарий – крушение со смертельным (для вас) исходом. Обозначим его вероятность как
Чтобы понять, как события зависят друг от друга, обозначим
Нам также необходимо знать
Эти вероятности полезны, но вы желаете знать не их. Вам нужна величина
Символ ∙ означает умножение. Вскоре я объясню, откуда появляется это уравнение, а пока просто примем его. Оно было рассмотрено преподобным Томасом Байесом в середине XVIII века и с тех пор используется математиками[24]. Подставив все нужные числа в наше уравнение, мы получаем:
Даже если это самая сильная болтанка, которую вы когда-либо испытывали, шансы погибнуть составляют 0,00001. Вы благополучно приземлитесь с вероятностью 99,99999 %.
То же рассуждение применимо к целому ряду различных, казалось бы, опасных ситуаций. Даже если во время купания на австралийском побережье вам кажется, что вы видите в воде нечто пугающее, вероятность того, что это акула, крохотная. Вы можете волноваться, когда ваши близкие возвращаются поздно домой, а вам не удается с ними связаться, но вероятнее всего, что они просто забыли зарядить телефон. Многое из того, что мы считаем новой информацией – тряска самолета, неясные фигуры в воде или отсутствие звонков, – не так уж страшно, если подходить к проблеме правильно.
Теорема Байеса позволяет вам верно оценивать важность информации и сохранять спокойствие, когда все вокруг паникуют.
Я смотрю на мир способом, который именую кинематографическим: часто (и один, и даже в компании) прокручиваю в голове фильмы о своем будущем. Это не один фильм или одно будущее; это много фильмов с разными поворотами сюжета и концовками. Объясню на примере самолета.
Когда я взлетаю и приземляюсь на самолете, то вижу катастрофу, которую описал выше. Если лечу с семьей, то представляю, как держу руки детей, говорю, что люблю их, чтобы они не беспокоились. Я воображаю, как мы держимся вместе, когда падаем навстречу смерти. Когда я лечу один, а вокруг только незнакомцы, то смотрю другой фильм: наблюдаю целые годы, которые моя семья проведет без меня. Похороны проходят быстро, и я вижу, как моя жена в одиночку справляется с детьми и рассказывает им истории о нашей совместной жизни. Этот фильм неописуемо печален.