Но почему? Потому что мы хорошие? Потому что всегда позволяем наступать на себя? Потому что слабы и не можем за себя постоять?
Нет. Нет. Нет. Вовсе не поэтому. Нам нужно прощать их, потому что мы рациональны и верим в логику и разум. Мы хотим быть справедливыми. Мы знаем теорему преподобного Байеса. А второе уравнение говорит нам, что это –
И вот почему. Теорема Байеса – связь, которую нам нужно установить между моделью и данными. Она позволяет нам проверить, насколько хорошо наши картинки соотносятся с реальностью. В примере, который мы разбирали в начале главы, мы рассматривали вероятность
Катастрофа и стерва – модели в наших головах. Это наши представления о мире, которые принимают форму мыслей или (в моем случае) фильмов. Тряска и грубость – данные, которые есть в нашем распоряжении. Это нечто осязаемое, то, что происходит, что мы можем ощущать. Значительная часть прикладной математики включает сопоставление моделей с данными, столкновение наших мечтаний с суровой реальностью.
Будем использовать букву M для модели и Д для данных. Мы хотим знать сейчас вероятность того, что модель верна (Рэйчел – стерва), при условии истинности данных (грубый комментарий в туалете). Имеем:
Чтобы понять уравнение (формулу Байеса), лучше всего рассмотреть по отдельности компоненты правой части.
Числитель (часть над дробной чертой) – произведение двух вероятностей,
Мы перемножаем вероятности, чтобы найти вероятность того, что произошли одновременно оба события. Например, если я бросаю две игральные кости и хочу найти вероятность выпадения двух шестерок, то я определяю вероятность 1/6 для выпадения шестерки на первой кости, вероятность 1/6 для шестерки на второй, а затем перемножаю их и получаю вероятность выпадения шестерок на обеих костях: 1/6 ∙ 1/6 = 1/36. Тот же принцип применяется и здесь: числитель – вероятность того, что Рэйчел стерва и она отпустила стервозный комментарий при посещении туалета.
Итак, числитель описывает Рэйчел как стерву, но мы должны также рассмотреть альтернативную модель, в которой она хороший человек. Это делается в знаменателе дроби справа. Рэйчел может быть стервой, сделавшей стервозный комментарий (M), или хорошим человеком, допустившим ошибку (M–). Черта над буквой означает противоположность или дополнение. В нашем случае дополнение к «быть стервой» – «быть не стервой», «быть хорошим человеком». Обратите внимание, что первое слагаемое в знаменателе совпадает с числителем,
Если Рэйчел не стерва, то она хороший человек, поэтому
Рис. 2. Иллюстрация теоремы Байеса
Осталось только произвести подсчет – точно так же, как с крушением самолета, но с другими числами:
Вероятность того, что Рэйчел – стерва, примерно 1/5. Именно поэтому Эми стоит простить ее. С вероятностью 4/5 она хороший человек. Было бы нечестно судить девушку только по одному действию. Эми не следует упоминать, что она слышала Рэйчел, или допустить, чтобы эти слова влияли на их общение. Лучше ждать и смотреть, что произойдет завтра. С вероятностью 80 % к концу года они будут вместе смеяться над этим случаем в туалете.