Сэру Дэвиду Коксу сейчас 95 лет, и он никогда не прекращал трудиться. За свою 80-летнюю карьеру Кокс написал 317 научных работ, и очень вероятно, что напишет еще. В своем офисе в Наффилд-колледже в Оксфорде он продолжает писать комментарии и обзоры современной статистики, а также вносить новый вклад в эту область.
Я спросил его, каждый ли день он появляется в офисе.
– Не каждый, – ответил Дэвид. – В субботу и воскресенье не появляюсь.
Затем сделал паузу и поправился:
– Точнее, вероятность того, что я приду на работу в субботу или в воскресенье, отлична от нуля. Такое может произойти.
Сэр Дэвид Кокс любит точность. Его ответы на мои вопросы были осторожными и обдуманными; математик всегда оговаривал уровень уверенности в своей способности дать ответ.
Именно Кокс открыл уравнение ставок. Сам он, правда, никогда бы так не выразился, и это в любом случае не совсем верно. Точнее было бы сказать, что он разработал теорию логистической регрессии, которую я использовал для нахождения α и β, а Бентер – для определения факторов, влияющих на исход скачек[21]. Дэвид Кокс разработал статистический метод, благодаря которому уравнение ставок дает точные прогнозы.
Логистическая регрессия была продуктом послевоенной Британии. К финалу Второй мировой войны Дэвид закончил изучать математику в Кембридже, и его направили на работу в королевские ВВС. Затем он перешел в текстильную промышленность, поскольку в Великобритании начался процесс восстановления[22]. Кокс рассказал мне, что изначально его интересовала чистая математика, которую он изучал, но такая работа привлекла его внимание к новым задачам. «Текстильная промышленность была полна увлекательных математических проблем», – сказал он.
Сэр Дэвид признавал, что смутно помнит детали, но лучился энтузиазмом, говоря о тех временах. Он рассказал, как можно использовать тесты для различных характеристик материалов, чтобы определить вероятность их разрушения, и о проблемах, связанных с созданием более прочного и более однородного конечного продукта из грубо пряденой шерсти. Кроме того, в ВВС он столкнулся с задачами, касавшимися частоты аварий и аэродинамики крыла. Это также дало ему много пищи для размышлений.
Именно из таких практических соображений у Дэвида Кокса зародился более общий, математический вопрос: каким образом лучше всего прогнозировать, как разные факторы (скорость ветра или напряжения в материале и другие) могут повлиять на что-то – например, на авиационную катастрофу или на то, порвется ли одеяло. Это вопрос того же типа, который Бентер задавал о лошадях: как зависит вероятность победы четвероногого от истории его прошлых выступлений и от погоды.
– Когда я создавал эту теорию [в середине 1950-х], самые серьезные разногласия в университетах касались анализа медицинских и психологических данных, предсказания того, как разные факторы связаны с медицинским результатом, – рассказывал Кокс. – Логистическая регрессия возникла в результате синтеза моего практического опыта и математического образования. Все известные мне проблемы медицины, психологии и промышленности можно было решить с помощью одного семейства математических функций.
Это семейство оказалось гораздо полезнее, чем предполагал даже сам ученый. Начиная с промышленности 1950-х, когда логистическая регрессия играла важную роль в интерпретации результатов медицинских исследований, она успешно применяется к бесчисленным математическим задачам. Именно этот подход использует Facebook, чтобы определить, какую рекламу нам показать, а Spotify – чтобы рекомендовать нам музыку. Он же стал частью системы идентификации пешеходов в автомобилях без водителей. И конечно, он используется в азартных играх…
Я спросил у сэра Дэвида, знает ли он об успехах Бентера в применении логистической регрессии к скачкам. Он не слышал. Тогда я поведал ему, как логистическая регрессия принесла миллиард долларов, а также об оксфордском студенте Мэттью Бенхэме и его успехе в предсказании результатов футбольных матчей.
– Предпочту сказать, что вам не следует играть в азартные игры, – сказал он мне, а затем надолго задумался.
Потом Кокс начал вспоминать об одном из своих коллег в 1950-х. Он взял с меня обещание никогда не повторять эту историю, и я сдержу слово.
Ставки – это не прогнозирование будущего с определенностью. Это определение мелких различий между тем, как смотрите на мир вы и как смотрят на него другие. Если ваш взгляд чуть острее, а ваши параметры лучше объясняют данные, у вас есть преимущество. Не ждите, что оно появится сразу. Его нужно наращивать постепенно, методом проб и ошибок, улучшая оценки своих параметров. И не думайте, что будете постоянно побеждать. При регулярной игре у вас получится выигрывать лишь чуть чаще, чем проигрывать.