{–}
{ Add Top of Stack to Primary }
procedure GenAdd(Size: char);
begin
EmitLn('ADD.' + Size + ' D7,D0');
end;
{–}
{ Subtract Primary from Top of Stack }
procedure GenSub(Size: char);
begin
EmitLn('SUB.' + Size + ' D7,D0');
EmitLn('NEG.' + Size + ' D0');
end;
{–}
ОК, я соглашусь с вами: я выдал вам множество подпрограмм с тех пор, как мы в последний раз протестировали код. Но вы должны признать, что каждая новая подпрограмма довольно проста и ясна. Если вам (как и мне) не нравится тестировать так много новых подпрограмм одновременно все в порядке. Вы можете заглушить подпрограммы типа Convert, Promote и SameType так как они не считывают входной поток. Вы не получите корректный код, конечно, но программа должна работать. Затем постепенно расширяйте их.
При тестировании программы не забудьте, что вы сначала должны объявить некоторые переменные а затем начать «тело» программы с "B" в верхнем регистре (для BEGIN). Вы должны обнаружить, что синтаксический анализатор обрабатывает любые аддитивные выражения. Как только все подпрограммы преобразования будет введены, вы должны увидеть, что генерируется правильный код и код для преобразования типов вставляется в нужных местах. Попробуйте смешивать переменные различных размеров а также литералы. Удостоверьтесь, что все работает правильно. Как обычно, хорошо было бы попробовать некоторые ошибочные выражения и посмотреть, как компилятор обрабатывает их.
К этому моменту вы можете подумать, что я зашел слишком далеко в смысле глубоко вложенных процедур. В этом несомненно есть большие накладные расходы. Но в моем безумии есть смысл. Как в случае с UnOp, я заглядываю вперед на время, когда мы захотим генерировать лучший код. С таким способом организации кода мы можем достичь этого без значительных изменений в программе Например, в случаях, где значение помещенное в стек не должно преобразовываться, все же лучше использовать инструкцию «вытолкнуть и сложить». Если мы решим проверять такие случаи, мы можем включить дополнительные тесты в PopAdd и PopSub не изменяя что-либо еще.
Процедуры для работы с мультипликативными операторами почти такие же. Фактически, на первом уровне они почти идентичны, так что я просто покажу их здесь без особых фанфар. Первая – наша общая форма для Factor, которая включает подвыражения в скобках:
{–}
{ Parse and Translate a Factor }
function Expression: char; Forward;
function Factor: char;
begin
if Look = '(' then begin
Match('(');
Factor := Expression;
Match(')');
end
else if IsAlpha(Look) then
Factor := Load(GetName)
else
Factor := LoadNum(GetNum);
end;
{–}
{ Recognize and Translate a Multiply }
Function Multiply(T1: char): char;
begin
Match('*');
Multiply := PopMul(T1, Factor);
end;
{–}
{ Recognize and Translate a Divide }
function Divide(T1: char): char;
begin
Match('/');
DIvide := PopDiv(T1, Factor);
end;
{–}
{ Parse and Translate a Math Term }
function Term: char;
var Typ: char;
begin
Typ := Factor;
while IsMulop(Look) do begin
Push(Typ);
case Look of
'*': Typ := Multiply(Typ);
'/': Typ := Divide(Typ);
end;
end;
Term := Typ;
end;
{–}
Эти подпрограммы соответствуют аддитивным почти полностью. Как и прежде, сложность изолирована в PopMul и PopDiv. Если вам захочется протестировать программу прежде чем мы займемся ими, вы можете написать их пустые версии, аналогичные PopAdd и PopSub. И снова, код не будет корректным в данный момент, но синтаксический анализатор должен обрабатывать выражения произвольной сложности.
Если вы убедились, что сам синтаксический анализатор работает правильно, мы должны выяснить, что необходимо сделать для генерации правильного кода. С этого места дела становятся немного труднее так как правила более сложные.
Давайте сперва возьмем случай умножения. Эта операция аналогична «addops» в том, что оба операнда должны быть одного и того же размера. Она отличается в трех важных отношениях:
Тип произведения обычно не такой же как тип двух операндов. Для произведения двух слов мы получаем в результате длинное слово.