JSR DIV32
Result = L
W Преобразовать D7 в L
DIVS
Result = B Преобразовать D7 в L
DIVS
Result = W Преобразовать D0 в L
JSR DIV32
Result = L
L Преобразовать D7 в L
JSR DIV32
Result = B Преобразовать D7 в L
JSR DIV32
Result = W JSR DIV32
Result = L
(Вы можете задаться вопросом, почему необходимо выполнять 32-разрядное деление, когда делимое, скажем, всего лишь байт. Так как число битов в результате может быть только столько, сколько и в делимом, зачем беспокоиться? Причина в том, что если делитель – длинное слово и в нем есть какие-либо установленные старшие разряды, результат деления должен быть равен нулю. Мы не смогли бы получить его, если мы используем только младшее слово делителя)
Следующий код предоставляет корректную функцию для PopDiv:
{–}
{ Generate Code to Divide Stack by the Primary }
function PopDiv(T1, T2: char): char;
begin
Pop(T1);
Convert(T1, 'L', 'D7');
if (T1 = 'L') or (T2 = 'L') then begin
Convert(T2, 'L', 'D0');
GenLongDiv;
PopDiv := 'L';
end
else begin
Convert(T2, 'W', 'D0');
GenDiv;
PopDiv := T1;
end;
end;
{–}
Две подпрограммы генерации кода:
{–}
{ Divide Top of Stack by Primary (Word) }
procedure GenDiv;
begin
EmitLn('DIVS D0,D7');
Move('W', 'D7', 'D0');
end;
{–}
{ Divide Top of Stack by Primary (Long) }
procedure GenLongDiv;
begin
EmitLn('JSR DIV32');
end;
{–}
Обратите внимание, мы предполагаем, что DIV32 оставляет результат (длинное слово) в D0.
ОК, установите новые процедуры деления. Сейчас у вас должна быть возможность генерировать код для любого вида арифметических выражений. Погоняйте ее!
Наконец-то, в этой главе мы узнали как работать с переменными (и литералами) различных типов. Как вы можете видеть, это не было слишком сложно. Фактически, в каком-то отношении большая часть кода выглядит даже еще проще, чем это было в более ранних программах. Только операторы умножения и деления требуют небольших размышлений и планирования.
Основная идея, которая облегчила нам жизнь, – идея преобразования процедур типа Expression в функции, возвращающие тип результата. Как только это было сделано, мы смогли сохранить ту же самую общую структуру компилятора.
Я не буду притворяться, что мы охватили каждый одиночный аспект этой проблемы. Я удобно проигнорировал беззнаковую арифметику. Из того, что мы сделали, я думаю вы можете видеть, что их включение не добавляет никаких дополнительных проблем, просто дополнительные проверки.
Я так же игнорировал логические операторы And, Or и т.д. Оказывается, их довольно легко обрабатывать. Все логические операторы – побитовые операции, так что они симметричны и, следовательно, работают в том же самом режиме, что и PopAdd. Однако, имеется одно отличие: если необходимо расширить длину слова для логической переменной, расширение должно быть сделано как число без знака. Числа с плавающей точкой, снова, являются простыми для обработки... просто еще несколько процедур, которые будут добавлены в run-time библиотеку или, возможно, инструкции для математического сопроцессора.
Возможно более важно, что я также отделил проблему контроля соответствия типов, в противоположность преобразованию. Другими словами, мы разрешили операции между переменными всех комбинаций типов. Вообще, это не будет верным... конечно вы не захотите прибавить целое число, например, к строке. Большинство языков также не позволят вам смешивать символьные и целочисленные переменные.
Снова, в действительности в этом случае нет никаких новых проблем для рассмотрения. Мы уже проверяем типы двух операндов... в основном эти проверки выполняются в процедурах типа SameType. Довольно просто включить вызов обработчика ошибок если типы двух операндов несовместимы.
В общем случае мы можем рассматривать каждый одиночный оператор как обрабатываемый отдельной процедурой, в зависимости от типа двух операндов. Это просто, хотя и утомительно, реализовать просто создав таблицу переходов с типами операндов как индексами. В Паскале эквивалентная операция включала бы вложенные операторы Case. Некторые из вызываемых процедур могли бы тогда быть простыми подпрограммами обработки ошибок, в то время как другие могли бы выполнять любые виды преобразований, необходимые нам. При добавлении нами типов, число процедур будет возрастать в геометрической прогрессии, но это все равно не неприемлемо большое число процедур.
Сдесь же мы свернули такую таблицу переходов в гораздо меньшее количество процедур, просто используя симметрию и другие упрощающие правила.