{–}
{ Convert a Data Item from One Type to Another }
procedure Convert(Source, Dest: char);
begin
if Source <> Dest then begin
if Source = 'B' then
EmitLn('AND.W #$FF,D0');
if Dest = 'L' then
EmitLn('EXT.L D0');
end;
end;
{–}
Затем, мы должны реализовать логику, требуемую для загрузки и сохранения переменной любого типа. Вот подпрограммы для этого:
{–}
{ Load a Variable to the Primary Register }
function Load(Name: char): char;
var Typ : char;
begin
Typ := VarType(Name);
LoadVar(Name, Typ);
Load := Typ;
end;
{–}
{ Store a Variable from the Primary Register }
procedure Store(Name, T1: char);
var T2: char;
begin
T2 := VarType(Name);
Convert(T1, T2);
StoreVar(Name, T2);
end;
{–}
Обратите внимание, что Load является функцией, которая не только выдает код для загрузки, но также возвращает тип переменной. Таким образом, мы всегда знаем, с каким типом данных мы работаем. Когда мы выполняем Store, мы передаем ей текущий тип переменной в D0. Так как Store также знает тип переменной назначения, она может выполнить преобразование необходимым образом.
Вооруженная всеми этими новыми подпрограммами, реализация нашего элементарного присваивания по существу тривиальна. Процедура Expression теперь становится функцией возвращающей тип выражения в процедуру Assignment:
{–}
{ Parse and Translate an Expression }
function Expression: char;
begin
Expression := Load(GetName);
end;
{–}
{ Parse and Translate an Assignment Statement }
procedure Assignment;
var Name: char;
begin
Name := GetName;
Match('=');
Store(Name, Expression);
end;
{–}
Снова, заметьте как невероятно просты эти две подпрограммы. Мы изолировали всю логику типа в Load и Store и хитрость с передачей типа делает остальную работу чрезвычайно простой. Конечно, все это для нашего специального, тривиального случая с Expression. Естественно, для общего случая это будет более сложно. Но теперь вы смотрите на финальную версию процедуры Assignment!
Все это выглядит как очень простое и ясное решение, и действительно это так. Откомпилируйте эту программу и выполните те же самые тесты, что и ранее. Вы увидите, что все типы данных преобразованы правильно и здесь немного, если вообще есть, зря потраченных инструкций. Только преобразование «байт-длинное слово» использует две инструкции когда можно было бы использовать одну, и мы могли бы легко изменить Convert для обработки этого случая.
Хотя мы в этом случае не рассматривали переменные без знака, я думаю вы можете видеть, что мы могли бы легко исправить процедуру Convert для работы и с этими типами. Это «оставлено как упражнение для студента».
Зоркие читатели могли бы отметить, однако, что мы еще даже не имеем правильной формы простого показателя, потому что мы не разрешаем загрузку литеральных констант, только переменных. Давайте исправим это сейчас.
Для начала нам понадобится функция GetNum. Мы уже видели ее несколько версий, некоторые возвращают только одиночный символ, некоторые строку, а некоторые целое число. Та, которая нам здесь нужна будет возвращать длинное целое, так что она может обрабатывать все, что мы ей подбросим. Обратите внимание, что здесь не возвращается никакой информации о типах: GetNum не интересуется тем, как будет использоваться число:
{–}
{ Get a Number }
function GetNum: LongInt;
var Val: LongInt;
begin
if not IsDigit(Look) then Expected('Integer');
Val := 0;
while IsDigit(Look) do begin
Val := 10 * Val + Ord(Look) – Ord('0');
GetChar;
end;
GetNum := Val;
SkipWhite;
end;
{–}
Теперь, когда работаем с литералами, мы имеем одну небольшую проблему. С переменными мы знаем какого типа они должны быть потому что они были объявлены с таким типом. Мы не имеем такой информации о типе для литералов. Когда программист говорит «-1», означает ли это байт, слово или длинное слово? Мы не имеем никаких сведений. Очевидным способом было бы использование наибольшего возможного типа, т.е. длинного слова. Но это плохая идея, потому что когда мы примемся за более сложные выражения, мы обнаружим, что это заставит каждое выражение включающее литералы, также переводить в длинное.