Lawrence looks carefully around the pub. They are the only customers, and he cannot bring himself to believe that Mrs. Ramshaw is a spy. "I thought it might have something to do with--" he says, and nods in the direction of Bletchley Park.
"They are building--I have helped them build--a machine called Colossus."
"I thought I saw your hand in it."
"It is built from old ideas--ideas we talked about in New Jersey, years ago," Alan says. Brisk and dismissive is his tone, gloomy is his face. He is hugging the
"Why are you so glum?" Alan says. "What have you been working on?"
"Same stuff, different context," Waterhouse says. With these four words he conveys, in full, everything that he has been doing on behalf of the war effort. "Fortunately, I came upon something that is actually rather interesting."
Alan looks delighted and fascinated to hear this news, as if the world had been completely devoid of interesting things for the last ten years or so, and Waterhouse had stumbled upon a rare find. "Tell me about it," he insists.
"It's a cryptanalysis problem," Waterhouse says. "Non-Enigma." He goes on to tell the story about the messages from U-553. "When I got to Bletchley Park this morning," he concludes, "I asked around. They said that they had been butting their heads against the problem as long as I had, without any success."
Suddenly, Alan looks disappointed and bored. "It must be a one-time pad," he says. He sounds reproachful.
"It can't be. The ciphertext is not devoid of patterns," Waterhouse says.
"Ah," replies Alan, perking up again.
"I looked for patterns with the usual
"As in Baudot code," Alan says (15). He looks guardedly interested again.
"So I converted each letter into a number between one and thirty-two, using the Baudot code. That gave me a long series of small numbers. But I wanted some way to convert all of the numbers in the series into one large number, just to see if it would contain any interesting patterns. But this was easy as pie! If the first letter is R, and its Baudot code is 01011, and the second letter is F, and its code is 10111, then I can simply combine the two into a ten-digit binary number, 0101110111. And then I can take the next letter's code and stick that onto the end and get a fifteen-digit number. And so on. The letters come in groups of five--that's twenty-five binary digits per group. With six groups on each line of the page, that's a hundred and fifty binary digits per line. And with twenty lines on the page, that's three thousand binary digits.
So each page of the message could be thought of not as a series of six hundred letters, but as an encoded representation of a single number with a magnitude of around two raised to the three thousandth power, which works out to around ten to the nine hundredth power."