Ренессанс возвращает активный и живой интерес к непосредственному использованию математических инструментов в самых разных отраслях знаний и деятельности, Новое время осуществляет грандиозный прорыв в области математизации наук о природе. Считавший себя платоником Галилей (кстати, как и Кеплер, Коперник) выдвигает в "Пробирщике" тезис "Книга природы написана на языке математики", Декарт предлагает геометрический метод как для философии, так и для физики ,(3) а Ньютон и Лейбниц разрабатывают для решения физических задач новый математический аппарат, не известный ни античности, ни средневековью. Но у такого успеха обнаруживается и теневая сторона. С одной стороны, резко возросли концептуальные, эвристические возможности физики, она превращается в эталон строгих и точных наук. С другой же – названный прорыв оказался слишком специализированным, односторонним. Это обусловлено не только специфической "материалистичностью", "механистичностью" избранной установки исследования, но и не в последнюю очередь особенностями самого возобладавшего математического аппарата – дифференциального и интегрального исчислений, – накладывающего на изучаемые объекты крайне стеснительные требования, в частности, континуальности, бесконечной делимости. За новое знание пришлось заплатить чересчур высокую цену.
Именно с тех пор ведет отсчет фатальное расщепление на науки о природе, с одной стороны, и гуманитарные, социальные, с другой. После провала наивных, хотя и по-своему героических, попыток распространить достижения механики на философские, социальные, искусствоведческие, антропологические вопросы, превратить механические принципы в универсальный ключ к мирозданию и мировоззрению (так называемый механицизм) упомянутый разрыв стал очевидным и, как полагали, непреложным. Неоправданная, если не сказать неправедная, экспансия новых точных наук вызвала ответно-симметричную реакцию: из философии, истории, искусства и искусствоведения, из гуманитарных и социальных наук изгоняются сознательные математические приемы, включая те, что традиционно применялись в них на протяжении веков и тысячелетий.(4) Появление малейших признаков математики в гуманитарном или обществоведческом контексте оказывалось достаточным поводом, чтобы подвергнуть автора остракизму, обвинить в паранаучности, изгнать из корпорации серьезных ученых. Отдельные исключения, попытки протянуть друг другу руки – попытки, отметим, большей частью робкие и неудачные – не отменяют этого правила.
Нам еще не раз на протяжении книги, по разным поводам придется возвращаться к означенной теме, пока же упомянем несколько частных моментов. Революция в точных науках, в математике, разумеется, не сводилась только к созданию дифференциального и интегрального исчислений. Переосмыслению подверглись и сами представления о числе. Последнее все более отчуждается от качества, формы, выражает исключительно количество (хочется добавить: "пустое количество"), отторгается и от логики, теряет внутреннюю обязательность и, так сказать, экзистенциальный стержень. Число становится голо-акциденциальным, лишаясь причастности субстанциальной существенности. Нельзя сказать, что такая редукция всегда неоправданна. Скажем, у Ивана в кармане 3 рубля, у Петра – 10, а у Сергея – 110 руб. 53 коп. В таких случаях именно количественный аспект занимает первое место по значимости, и количество пребывает вне рамок имплицитной необходимости: с тем же успехом у Ивана могло бы быть 300 руб., а у Сергея – 500 тыс. долга. Аналогично, длина Нила составляет 6 671 км, а Невы только 74. Но существуют и принципиально иные ситуации, и со второй половины ХIХ в. они становятся все более заметными.
В таблице Менделеева номер элемента детерминирует его химические свойства, т.е. число фиксирует внутреннее