Генезис первых представлений о числе не удается проследить ни историкам, ни этнологам. Начальные навыки счета присущи самым первобытным народам. Так, внезапно застигнутые цивилизацией аборигены Австралии и островов Полинезии (образцовый репрезентант обществ позднего палеолита), умели считать и до встречи с европейцами. Правда, их счет не заходил дальше трех и обнимал собой отнюдь не любые предметы. Аналогично, "сходство числительных у индоевропейских народов показывает, что названия чисел у предков этих народов появились еще в те далекие времена, когда они говорили на одном языке" [142, с. 11], а к ХХХ в. до н.э. в Европе относятся свидетельства уже достаточно развитых навыков счета (на лучевой кости молодого волка были обнаружены 55 зарубок, расположенных группами по 5, после 25 – длинная черта [там же, c. 12]). Существуют основания полагать, что способность считать – достояние и дочеловеческих стадий. По крайней мере специалисты по поведению животных, этологи, свидетельствуют, что кошки в состоянии учитывать своих котят по принципу "раз, два, много", проявляя беспокойство, если такая контрольная проверка не сходится. Следует оговорить, что кошачий счет распространяется исключительно на котят, не затрагивая прочих предметов. Зато вороны, эти, по выражению популярной телепрограммы, "бакалавры пернатого царства", охватывают процедурой подсчета значительно более широкий круг (например, ведут учет людям, проникшим на их территорию), и верхняя граница количества простирается у них до семи или десяти. Историки математики и культуры констатируют, что на разных этапах эволюции человек умел считать до трех (раз, два, много), до четырех (раз, два, три, много), до семи, сорока, десяти тысяч. При этом обращается внимание на следующие два момента. Во-первых, освоение каждой последующей ступени развития в среднем занимало существенно меньше времени, чем предыдущей, т.е. прогресс ускорялся. Во-вторых, операция счета последовательно освобождалась от жесткой связи с конкретными предметами, т.е. движение шло в направлении универсализации. Со временем счет "очищается", становится все более гибким и самостоятельным. Особый интерес для нас представляет, как обстояло дело с числом у древних греков, т.к. в античности мы усматриваем истоки собственной цивилизации.
Фалесу изначально известен факт неограниченности натурального ряда, а Эвклид доказывает теорему уже значительно более сложного содержания – об отсутствии верхнего предела последовательности простых чисел. Пифагор полагает число краеугольным камнем мироздания (хрестоматийная максима: "числа правят миром"), и пифагорейская школа не только устанавливает множество собственно математических истин, но и применяет элементарно-математические подходы к философии, натурфилософии, космологии, искусству – в частности, к музыке, скульптуре, архитектуре, – даже к религии. Пифагорейские общины энергично вмешиваются и в политику, но в конце концов оказались разгромленными. Влияние пифагорейцев на другие школы огромно, проходя красной нитью через Платона, Аристотеля, александрийских грамматиков, неоплатоников. Один из историков античности, А.И.Зайцев, имеет все основания утверждать: культура греко-римского мира в целом предстает нам в пифагорейской подсветке [128]. Карл Поппер, обязанный своей всемирной известностью политологическому труду "Открытое общество и его враги", в рамках своей основной профессии занимается специальными исследованиями математизированных социально-политических воззрений Платона, см. [260]. Сам же Платон полагал: "Точно так же никто, не познав ‹числа›, никогда не сможет обрести истинного мнения о справедливом, прекрасном, благом и других подобных вещах и расчислить это для себя и для того, чтобы убедить другого" ("Послезаконие" [251:III, 978, b]).
На чем остановился эллинский мир в своих знаниях о числе? В нашу задачу, конечно, не входит детальный обзор античной арифметики, учения о четности и нечетности, фигурных числах, пропорциях и т.д. Отметим лишь, что греки и римляне уверенно оперировали с положительными целыми числами и дробями, т.е. с числами рациональными, и столкнулись с иррациональностью некоторых радикалов. Отрицательные числа, нуль, бесконечность, числа трансцендентные – понятия более поздние. К особенностям античного подхода относится тесная увязка арифметических знаний с логикой, гносеологией, применение их к философии, искусству, естественнонаучным областям, к наукам о языке, литературе и обществе.