Уважаемая мисс Кушер, я хочу поблагодарить вас за то, что вы прекрасный учитель. Я не просто считаю вас замечательным человеком — вы еще и по-настоящему отличный учитель. Сперва я сочла ваши видеоролики о людях, которые не могли решать математические задачи, неправдоподобными. Думала, что только я не справляюсь с математикой. До меня не доходило, что с такими мыслями я никогда не смогу хоть немного продвинуться в этом направлении. Вы научили меня не только самому предмету и способам решения математических задач, но и тому, как в целом воспринимать жизнь.
Я творческий человек, математика никогда не была моим коньком. Когда вы стали говорить с нами образами и объяснять, почему мы делаем это, — вместо того чтобы просто показать, как это сделать, — я начала что-то понимать. А если я что-то поняла, то не останавливаюсь на достигнутом. Вы очень помогли мне разобраться во всем этом.
Прошел почти год, и я чувствую, что сильно выросла. Я вообще не думала, что смогу столь многому научиться. Вы всегда говорили: «Милли, просто попробуй», а я думала: «Конечно, попробовать можно, но у меня никогда не получится». Как же я ошибалась! Вы были уверены, что я смогу, и это весь год помогало мне справляться с трудностями. Поэтому говорю вам спасибо!
В письме упомянут важный момент, проясняющий суть вопроса: Нэнси верила в свою ученицу и продолжала подбадривать ее. Не менее важны и другие слова Милли: «Когда вы стали говорить с нами образами и объяснять, почему мы делаем это, — вместо того чтобы просто показать, как это сделать, — я начала что-то понимать. А если я что-то поняла, то не останавливаюсь на достигнутом». Тут Милли уловила суть обучения, о чем мы говорили в предыдущей главе: недостаточно давать ученикам положительную обратную связь — необходимо обеспечить понимание предмета и предоставить возможность успешно справляться с задачами.
Это возвращает нас к многоплановому подходу, когда процесс обучения открытый и творческий, а визуальные представления задач помогают ученикам взглянуть на математические факты под другим углом и справиться с освоением материала. Такой подход куда более эффективен, чем запоминание и зубрежка, на которые ориентировались в прошлом. Но все же во многих областях мы продолжаем поощрять навыки запоминания, хотя известно, что ученики с хорошей памятью не обладают б
Когда Нэнси составила пособия для визуального решения математических задач и объяснила ученикам,