Некоторые величайшие математики мира, в том числе получившие Филдсовскую премию, например Лоран Шварц[121] и Мариам Мирзахани[122], открыто говорили о том, насколько медленно они думают обо всем, что касается математики. После получения Филдсовской премии Шварц написал автобиографию о своих школьных годах, где рассказал, что в школе чувствовал себя глупым, потому что был одним из самых медленно думающих учеников. Вот что он говорит.
Я всегда сомневался в своих интеллектуальных способностях и сообразительным себя не считал. Правда в том, что я был и остаюсь достаточно медлительным. Чтобы ухватить суть чего-либо, мне необходимо время, поскольку я всегда стремлюсь понять все до конца. К окончанию одиннадцатого класса я втайне считал себя довольно глупым. Это меня долго беспокоило.
Я все такой же медлительный… В конце одиннадцатого класса я оценил ситуацию и пришел к выводу, что скорость нельзя считать точным показателем интеллекта: важно глубоко понимать суть вещей и их взаимосвязь друг с другом. В этом и состоит интеллект. И не имеет значения, быстро ты соображаешь или медленно[123].
Во время учебы в школе я соображала быстро, к большому неудовольствию моей учительницы в десятом классе. Каждый день она начинала занятия с того, что писала на доске примерно 80 вопросов. В это время я развлекалась тем, что находила решение с той же скоростью, с которой она писала. Когда учительница клала мел и оборачивалась к классу, я уже заканчивала работу и отдавала ей тетрадь с решениями. Ей не нравились такие темпы, и однажды она сказала, будто я делаю это, чтобы позлить ее (в этой фразе есть над чем задуматься). Она проверяла мою работу в надежде, что там есть ошибки, но я не помню ни одной. Если бы я могла перенестись в те времена со знанием, которым обладаю сейчас, то обратила бы внимание своей учительницы на то, что так быстро находила ответы на вопросы только потому, что они не требовали глубоких или сложных размышлений. Но, скорее всего, это не сошло бы мне с рук.
Быстро расправляясь с задачами по математике, я действовала в соответствии с мифом о том, что скорость — это главное. Неудивительно, что в нашей архаичной системе школьного образования миллионы учеников убеждены в том, что ценится именно быстрое выполнение заданий. Спустя много лет я научилась искать решение разными способами. Теперь я рассматриваю математические задачи не с точки зрения быстроты решения, а как повод для глубокого и творческого размышления. Эта перемена была мне во благо. Сегодня я извлекаю больше пользы не только из размышлений над математическими задачами, но и из чтения научной или технической литературы или работы в данных областях. Смена подхода очень помогла мне и подпитала мое желание помочь другим в том, чтобы развенчать этот вездесущий миф и прийти к пониманию, креативному осмыслению и установлению логических взаимосвязей.
Врач Норман Дойдж считает, что когда люди что-либо быстро осваивают, то предположительно укрепляют уже существующие нейронные связи. Он характеризует их известной английской поговоркой «Легко пришло — легко ушло», ведь эти связи можно ослабить или разрушить[124]. Смотрите, что происходит, когда мы готовимся к тестам и повторяем уже пройденное. Мы загружаем себя информацией, через пару дней воспроизводим ее, но испытание длится недолго — и мы быстро забываем выученное. Более устойчивые изменения в мозге происходят при образовании новых структур, а именно при физическом росте нейронных связей и синапсов. Этот процесс всегда небыстрый.
Дойдж ссылается на исследование людей, изучающих азбуку Брайля. Ученые отметили, что в этом случае мозг сразу начинает быстро развиваться, однако более медленное, глубокое и устойчивое развитие занимает гораздо больше времени. Обучение длилось месяцами.
Если по ощущениям ваш разум похож на решето и вы не в состоянии что-то удержать в памяти, Дойдж рекомендует продолжать попытки — более глубокое понимание придет позже. Он считает, что «тугодумы», кажущиеся слишком медлительными, могут усваивать что-либо лучше «торопыг», которые учатся галопом по Европам и не обязательно сохраняют полученные знания без постоянного повторения[125].