Когда все только начиналось, я действовала по одному алгоритму, потому что он был моей «страховочной сеткой». А теперь думаю так: «Отлично, как мне это нарисовать? Как представить визуально?» Я понимаю, почему алгоритм работает, теперь у меня в голове совершенно ясная картина. Особенно ярко это проявилось на теме дробей. Дети тут же сказали: «А, вот как это получается!» Они поняли, что любое математическое действие можно визуализировать, и тогда кто-то воскликнул: «О боже!» Да, те, кто раньше сводил математику к зубрежке фактов и правил, теперь испытывали восторг понимания: «О!»
Изменения, произошедшие с учителями, иллюстрируют двойную природу безграничного подхода — он меняет мышление и наши представления о себе, и отныне вы на любой материал и любую жизненную ситуацию будете смотреть многопланово.
Я предложила учителям пятых классов отказаться от вопросов, предполагающих ответ на автомате, и давать задачи, стимулирующие поиск неочевидных решений. Вот что сделала одна из педагогов.
Однажды я написала на доске: «Ответ — 17. Сколькими способами мы можем его получить?» Я думала, они начнут говорить 1 + 16, но дети предложили множество разных вариантов, при этом они от души веселились, что меня очень впечатлило.
Педагог рассказала в своем Twitter, что использовала ту же самую идею на уроке геометрии в старших классах. Написала ответ на доске и попросила учеников обосновать его, используя недавно пройденное. По ее словам, она была потрясена тем, какие разные креативные подходы использовали ученики, каким богатым материалом для последующего обсуждения это оказалось и какие возможности открылись для формирования нейронных связей в мозге.
Другая учительница пятых классов говорит, что теперь она просто показывает визуальное выражение математической идеи и спрашивает: «Что вы видите? А чего не видите? Что вы можете увидеть? Что могло бы стать продолжением?»
Все эти идеи совершенно не сложные, они строятся вокруг принципа разнообразия методов обучения. Они поощряют учащихся применять самые разные подходы, максимально далекие от традиционных. Учителя, меняющие свои методы, начинают легко оперировать материалом и ощущать свободу, которую дает такой подход к преподаванию: вместо того чтобы следовать за учебником, они экспериментируют и приглашают учеников экспериментировать вместе. Мы уже знаем, что многоплановый подход в обучении повышает коннективность мозга, способствует превращению подростков в успешных взрослых, которые, возможно, станут новаторами в своих областях.
Опыт подобных изменений имеется не только у учителей пятых классов из Калифорнийской долины. Холли Комптон до сих пор вспоминает, какой страх ее охватил, когда в первом классе ей нужно было прорешать целую страницу примеров с многозначными числами. Она, как и ее мать, сделала вывод, что у нее «не математический» мозг. За этим последовали годы фрустрации и походов к психологу. Отношения с математикой не задались из-за рабочей тетради, и в результате она решила, что математика не для нее.
К сожалению, математика быстрее любых других школьных предметов подрывает у учащихся веру в себя. Отчасти это происходит вследствие неправильных методов преподавания, что уже в первом классе вызывает такие сильные переживания, как у Холли. Но еще и из-за стереотипа, распространенного в нашем обществе: люди, успевающие по математике, действительно умны, а те, кому она дается с трудом, умом не блещут. На многих детей это действует деструктивно; среди таких оказалась и Холли. К сожалению, случай с Холли вряд ли является исключением. Вот как негативный опыт в математике повлиял на нее.
Он оказался поистине грандиозным. Всю свою жизнь я жила с клеймом неуверенности в себе.
К счастью, Холли усвоила новые представления о себе и своих способностях к обучению, что помогло ей освободиться от деструктивных установок. Решающим шагом стало понимание, что математические задачи можно решать разными способами. В этом и заключается значимость многопланового подхода к усвоению новых знаний. Холли признаётся в интервью: