Следует сказать, что ни зауриптерус, ни акантостега не считаются непосредственными предками тетрапод. Скорее, эти ископаемые животные представляют собой варианты эволюционного развития нескольких линий пресноводных рыб, живших в конце девонского периода. Сходство строения их плавников и конечностей тетрапод, по-видимому, отражает параллельную эволюцию разных групп животных в одинаковых экологических условиях (параллельная эволюция — важное и достаточно распространенное явление, о котором я кратко расскажу позднее).
Новые структуры с помощью новых переключателей
Как возникли автоподии? Обратимся вновь к данным эво-дево и к анализу генов и эмбрионов современных животных, чтобы понять, как происходит сдвиг в географии конечностей. Сравним развитие плавников рыб и конечностей тетрапод. В конечностях тетрапод три основных элемента обычно создаются в направлении от проксимального к дистальному отделу (в первую очередь бедра или плечи, в последнюю очередь пальцы). У рыб два первых этапа развития конечности совпадают с таковыми у тетрапод, а третий этап отсутствует.
У тетрапод все три этапа развития конечности происходят с участием двух специфических наборов /Vox-генов, относящихся к двум из четырех /Vox-кластеров. Использование /Vox-генов при построении проксимально-дистальной оси конечности позвоночных не имеет ничего общего с их использованием у членистоногих (где они обычно служат для создания разных типов конечностей). На каждом этапе происходит смена трехмерной картины экспрессии /Vox-генов, что коррелирует со спецификой каждого элемента конечности. Известно, что при мутации /Vox-генов у мышей и у людей нарушается нормальный процесс формирования конечностей. Так, мутации /Vox-генов, задействованных на третьем этапе развития конечностей, влияют на количество и размер пальцев.
Эволюция третьего этапа экспрессии /Vox-генов при создании автоподий — изобретение тетрапод. Этот третий этап контролируют особые переключатели, отличные от тех, которые контролируют два первых этапа. Очевидно, новые структуры появились по той причине, что несколько Hox-генов у позвоночных животных приобрели новый переключатель или группу переключателей, способных активировать эти гены в новом дистальном отделе конечности эмбриона.
Это не единственное изменение, произошедшее в ходе эволюции автоподий. Для формирования этого дистального отдела конечностей нужны были и другие изменения в развитии и генетическом багаже эмбриона. Другие гены, такие как члены семейства BMP, задействованные в формировании костей, и семейства GDF, участвующие в образовании суставов, приобрели специфические переключатели для создания пальцев. Кроме того, эволюционировали гены, участвующие в формировании всех видов мягких тканей конечностей — сухожилий, связок и мышц.
Летаем и ползаем: эволюция конечностей для нового образа жизни
За последующие 350 млн лет строение и функции конечностей четвероногих животных менялись множество раз во многих направлениях — от удивительного превращения лап в крылья у летающих животных до различной степени редукции конечностей у обитателей воды и суши. Все эти модификации происходили за счет эволюционных изменений развития конечностей, и в некоторых случаях ученым, работающим в области эво-дево, удавалось зафиксировать некоторые важные сдвиги в географии развивающихся конечностей.
Три раза в ходе эволюции животных — у птерозавров, птиц и летучих мышей — передние конечности тетрапод превращались в крылья. Чтобы животное могло летать, крыло должно двигаться вверх и вниз, вперед и назад, а также складываться вдоль тела, когда животное находится на земле. Интересно, что дизайн крыльев каждой из трех групп летающих животных отличается важными деталями. Пэт Шипман в книге "Расправляя крылья" (Taking Wing) назвала крылья птерозавров "крыльями пальцев", крылья птиц "крыльями предплечий", а крылья летучих мышей "крыльями кистей" (рис. 7.10). Давайте рассмотрим эти три изобретения в порядке их появления, начиная с птерозавров.