Читаем Беседы об информатике полностью

Электрон, скажем точнее, классический электрон, находящийся в покое и ни с чем не взаимодействующий, обладает энергией-массой и электрическим зарядом. С точки зрения этих двух характеристик все электроны абсолютно подобны друг другу. В свое время было поставлено несчетное количество опытов, чтобы выяснить, а не отличаются ли друг от друга заряды электронов хоть на самую малость? Вывод однозначный: у всех электронов заряд одинаковый. Заряд электрона — одна из наиболее фундаментальных физических констант. Он не изменяется даже при скоростях, приближающихся к скорости света, когда меняется очень многое.

Постоянство заряда электрона — интересное и далеко не очевидное свойство нашей Вселенной. Мы принимаем его как должное, но если задуматься, а главное, опереться на наш повседневный опыт, то естественнее было бы предположить, что заряды, да и другие свойства физических объектов, должны хоть немного, но отличаться друг от друга. Но сейчас уже нет оснований делать на этот счет какие-либо предположения, поскольку постоянство заряда электрона — научно доказанный факт. Более того, в точности таким же зарядом обладают все отрицательно заряженные элементарные частицы (кроме кварков, если таковые действительно существуют): отрицательные мюоны, пи-мезоны, гипероны и тому подобные. Другая группа частиц, представителем которой является протон, обладает таким же по величине, но противоположным по знаку электрическим зарядом. Подобные факты наводят на мысль, что Вселенная строилась и продолжает строиться по чертежам. Развивать эту мысль мы здесь не станем, она легко уведет нас в область чистой фантазии.

Вернемся к электронам. Вторым достаточно постоянным свойством электрона является его масса-энергия покоя. Вообще говоря, масса-энергия электрона изменяется в весьма больших пределах, но ни при каких условиях не может стать меньше некоторой постоянной величины, называемой массой покоя. Эта величина одинакова для всех электронов.

Совсем недавно, каких-нибудь пятьдесят лет тому назад, перечисление свойств электрона на этом бы закончилось. Все электроны во Вселенной представлялись в точности подобными друг другу. Но любой электрон обладает еще третьим свойством: собственным моментом количества движения, или, короче, спином. Абсолютная величина спина у всех электронов во Вселенной опять-таки одинаковая, но спин — вектор, он имеет не только абсолютную величину, но и направление. Направления спинов у разных электронов различны. Получается, что каждый электрон несет определенную информацию о самом себе. Эта информация складывается из значений заряда и массы, которые, взятые в совокупности, позволяют отличить электрон от неэлектрона, а также из направления спина, характерного для данного электрона среди других электронов.

Речь идет о классическом электроне. С позиций квантовой физики электрон вообще лишен индивидуальности: про электрон нельзя говорить «тот», «этот», «данный». Надо высказываться осторожно, например так: если вообще есть какие-либо причины выделять некоторый электрон среди других, то основанием к этому может служить направление его спина.

Сказанное поясним примером. Имеется ион атома гелия, то есть ядро гелия, несущее положительный электрический заряд, равный двум единицам, и связанный с этим ядром единственный электрон. Если наш ион находится в окружении свободных электронов, то почти наверняка он захватит один из них и превратится в нейтральный атом гелия. С той же степенью уверенности можно утверждать, что электрон не будет захвачен, если направление его спина совпадает с направлением спина электрона, уже связанного с ядром.

Так проявляется в данном случае принцип Паули, и так информация (некая физическая величина), которой располагает электрон, управляет построением структуры, которую называют атомом гелия.

Другим примером процесса создания структуры под воздействием информации является изготовление сдобной булочки на основе кулинарного рецепта.

Построение атома гелия, испечение сдобной булочки, застройка по архитектурному проекту городского района или целого города — в основе своей одинаковые процессы, отличающиеся лишь количественно.

Кстати, утверждение о количественном различии не совсем обоснованно. Ведь только с позиций сегодняшних знаний мы считаем электрон чем-то достаточно элементарным.

Итак, одним из свойств информации является способность управлять построением структур. Но это далеко не единственное ее свойство.

Второе свойство информации — сохраняться в течение любых промежутков времени. Молекула РНК хранит в себе некий чертеж, который может представлять собой чертеж простейшего организма — вируса или чертеж столь сложной системы, как человеческий организм.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука