Читаем Беседы об информатике полностью

Проявим, однако, осторожность. История науки учит нас, что без крайней необходимости не следует вводить какие-либо новые физические сущности. Много их было в свое время! И философский камень алхимиков, и теплород, и пресловутый эфир. А оказывается, что такой большой раздел физики, как термодинамика, — ее нам тоже не удалось обойти стороной на страницах наших бесед — может быть изложен исчерпывающим образом с привлечением только двух основных физических сущностей: энергии и энтропии.

Так не применяем ли мы слово «знает» к электрону в атоме в том же смысле, в каком можно сказать о доске, что она «знает», что прибита к крышке стола? Знает и поэтому не покидает своего места?

Поразмыслив, мы придем к выводу, что аналогия с доской неправомочна. Доску удерживают на месте гвозди. Чтобы удалить доску, надо выдернуть гвозди. На это затрачивается определенное количество работы. Физики считают, что каждая доска в столешнице обладает некой отрицательной энергией, численно равной работе по вытаскиванию гвоздей. Здесь привлекается единственная физическая сущность — энергия. Для того чтобы объяснить, почему доска не покидает своего места, достаточно вычислить энергию.

Каждый электрон в атоме также обладает некоторой отрицательной энергией, численно равной работе, которую нужно затратить, чтобы удалить электрон из атома. Но у нас речь идет о другом. Если из атома любого вещества удалить электрон, образуется положительный ион. В положительном ионе количество электронов на единицу меньше, чем зарядовое число ядра. Каждый электрон в ионе находится в определенном состоянии, и все они, вместе взятые, подчиняются принципу Паули. В ионе опять-таки не бывает двух электронов, состояния которых характеризуются одинаковыми значениями четырех квантовых чисел.

Если где-то поблизости имеются электроны, ион способен захватить один из них и восстановить свою электронную структуру, превратившись в нейтральный атом. Захват ионом «чужого» электрона может не сопровождаться изменением состояния, а значит и энергии, ни одного из «своих» электронов.

То же самое справедливо для захваченного электрона. Все свойства, присущие электрону, находящемуся на свободе, сохраняются после того, как он входит в состав атома. В ионе ничего не изменилось, и в электроне ничего не изменилось. Тем не менее никогда ни при каких условиях электрон не примет состояния, уже занятого другими электронами. А коли так, нам не остается ничего другого, как утверждать, что электрон знает о состояниях, всех электронов того же атома.

Поскольку атом — физическая система и в чудеса мы не верим, придется признать, что действительно существует некая физическая сущность, позволяющая электрону знать о состояниях других электронов и управляющая структурой электронных оболочек атомов.

Мы утверждаем также, что эта физическая сущность отлична от энергии. Энергия подчиняется закону сохранения, и если бы получение электроном знания о состояниях других электронов сопровождалось затратой энергии, то изменились бы состояния других электронов, а этого может и не произойти.

Наконец, эта физическая сущность универсальна, поскольку сказанное справедливо для всех без исключения атомов.

Назовем эту сущность информацией.

Тайны живого

Может быть, все, о чем говорилось, справедливо лишь для электронов в атомах? Это не так уж мало — весь окружающий нас мир состоит из атомов. Но только ли электроны обладают свойством знать или, как мы теперь скажем, располагать информацией о состояниях электронной структуры атома?

Мы уже говорили во второй беседе, что в последнее время стало обычным, хотя это совершенно неправильно, считать, что существуют как бы две физики. Одна — для привычного нам и воспринимаемого нашими органами чувств мира — ее называют классической физикой, а вторая — для мира атомов и молекул, или, иначе, микромира.

Мы привыкли, что в микромире могут происходить всяческие «чудеса», но поскольку прямо нас это не затрагивает: события микромира нашими органами чувств непосредственно не воспринимаются, — то и отношение к физике микромира довольно своеобразное. Верить-то мы, безусловно, верим, но не совсем понимаем, зачем нам все это нужно. Не относится ли информация к таким же микроявлениям?

Ну что ж, рассмотрим пример. Широко известны химические соединения, получившие название аминокислот. У каждой аминокислоты есть основная и боковая цепи, и отличаются различные аминокислоты именно боковыми цепями. Аминокислотам присвоены особые названия, например треонин, аланин, серин, лизин, аспарагиновая кислота и т. п. Всего в природе 20 типов аминокислот, и у всех основная цепь одинаковая, а боковые цепи разные.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука