Читаем Беседы об информатике полностью

Данные науки показывают, что нет оснований устанавливать пределы для сроков хранения информации молекулами РНК. Под воздействием высокой температуры, жесткого излучения и других внешних факторов молекула РНК может частично или полностью разрушиться. Однако, несмотря на сложность, она весьма стабильна и в широком диапазоне изменения внешних условий сохраняется сколь угодно долго. Это справедливо для молекул, состоящих из миллионов, а подчас и миллиардов нуклеотидов. Что касается более «простых» вещей, таких, например, как молекула воды, то она остается неизменной в течение всего времени существования Вселенной.

Слово «простых» мы не случайно взяли в кавычки. На первый взгляд молекула воды всего-навсего соединенные вместе атом кислорода и два атома водорода. Но есть у нее значительная подробность. Водородные атомы расположены в пространстве под определенным углом, и этот угол одинаков для всех без исключения молекул воды. Так что информация, которую хранит в себе вода, определяется не только составом молекулы, но и величиной угла, под которым расположены водородные атомы.

Третье свойство информации противоположно второму. Это свойство изменяться во времени. Возможно как разрушение, так и совершенствование информации. Приведем такой пример. Общепринято считать, что основным переломным моментом в процессе превращения обезьяны в человека был момент, когда обезьяна взяла палку, то есть научилась пользоваться орудиями труда. Повторяя на разные лады эту общеизвестную истину, обычно мало уделяют внимания слову «научилась». Палку обезьяна могла взять случайно и тут же забыть о достигнутом результате этого действия. Более того, медведицу можно научить кататься на коньках или ездить на мотоцикле, но это умение ни в коем случае не передается по наследству ее медвежатам. Важнейшую роль в процессе очеловечивания обезьяны сыграло то обстоятельство, что, взяв палку, она оказалась в состоянии запомнить, что из этого получилось, и передать это знание потомству.

На молекулярном уровне наблюдается то же самое. Полипептидные нити — белковые молекулы — строятся из отдельных аминокислот под управлением информации, записанной в РНК. Несколько иначе все обстоит с более сложными образованиями — белковыми субъединицами или, короче, блоками. Например, белки некоторых крабов и улиток построены из большого числа блоков — от 24 до 384, поэтому их молекулярный вес крайне велик: от 422 тысяч до 6 миллионов 700 тысяч. Молекула белка одного вида улитки с молекулярным весом 574 тысячи при подщелачивании раствора распадается сперва на половинки, затем на восьмушки, а затем на шестнадцатые доли, то есть на составляющие ее блоки. Если такой раствор подкислить, распавшиеся было субъединицы вновь собираются в единое целое.

Нет никаких ограничений, которые запрещали бы двум любым аминокислотам соединиться друг с другом, образовав дипептид. Ничто не запрещает дипептидам присоединить к себе третью аминокислоту, образовав трипептид, и так далее. А при наличии молекулы РНК в растворе аминокислот синтезируется строго определенный белок, строго определенная последовательность аминокислот. Молекулы белка, синтезированные с помощью данной молекулы РНК, неотличимы друг от друга как две молекулы воды или два электрона. Это замечательное, трудно представимое свойство природы.

При случайном объединении аминокислот всякий раз создается нечто новое. Получаются и сложные полипептиды, но точно так же, как ничто (в смысле физических законов) не запрещает им создаваться, ничто не запрещает им распадаться на более мелкие части. Различные полипептиды обладают разной степенью устойчивости в одинаковой среде. Намечается путь от случайного образования полипептидов к последующему их отбору по признаку устойчивости (выживание) и затем к воспроизведению (размножение) более устойчивых форм.

Большинство ученых склоняются к мнению, что именно таким был процесс зарождения жизни на Земле. Что касается нас, то мы усматриваем в основе этого пути процесс накопления информации.

Четвертое свойство информации — ее способность переходить из пассивной формы (она просто хранится и никак себя не проявляет) в активную, когда информация непосредственно участвует в процессе построения той или иной структуры. Обратное этому свойство — процесс запоминания, или записи, информации, то есть перевода ее из активной формы в пассивную. Примером может служить все тот же процесс синтеза белка с помощью информации, записанной на молекуле РНК.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука