Задача, решаемая в рамках общей теории связи, всегда одна и та же: передать наибольшее количество сигналов с наименьшими затратами. В тех случаях, когда в канале связи присутствуют шумы, а присутствуют они всегда, решение подобной задачи часто приводит к поразительным результатам. В частности, удается выловить сигнал из смеси с шумами, во много раз превосходящими его по мощности. Но речь идет о сигналах, в частности об электрических токах и напряжениях, а не об информации.
Нам могут возразить, указывая на то, что средством общей теории связи решались такие задачи, как дешифровка закодированных текстов. Решались они именно потому, что с самого начала за основу принимался не смысл исходного сообщения, а известные статистические свойства языка, на котором это сообщение написано. Здесь полная аналогия с термодинамикой, где во внимание принимаются не свойства самих молекул и атомов, а лишь статистические свойства их множеств. Отсюда и знаменитое совпадение формализмов общей теории связи с формализмами термодинамики.
Введя несколько несущественных условий, мы действительно можем считать любой физический канал связи термодинамической системой со всеми вытекающими отсюда аналогиями. Мы можем считать даже шенноновскую общую теорию связи одним из разделов статистической физики. Но изучение свойств каналов связи ни в коей мере не означает одновременного изучения свойств информации, которая может передаваться по этому каналу, а может и не передаваться.
В заключение этой беседы мы вынуждены констатировать, что до сих пор мы не только не знаем, в каких единицах мерить количество информации, но и не знаем вообще, что такое информация.
Беседа третья
Внутренний голос
Человек, одержимый роковой страстью, как писали в старинных романах, а попросту говоря, азартный игрок прибыл в Монте-Карло. Не успев толком обосноваться в гостиничном номере, он устремился на улицу. Подошел к дверям игорного дома.
«Не сюда», — говорит ему внутренний голос.
Второй и третий игорные дома также отвергаются. Наконец он вошел в помещение, где вокруг рулетки оживленная толпа. Собрался поставить на номер.
«Не этот», — говорит ему внутренний голос.
Еще одна попытка, еще и еще. В конце концов с молчаливого согласия внутреннего голоса игрок поставил всю свою наличность на некий номер, скажем девятнадцатый. Долго, как томительно долго мечется по столу шарик рулетки! Но всему наступает конец. Зеро! Никто не выиграл: все ставки забирает крупье.
«Вот черт! — сказал внутренний голос. — Кто бы мог подумать, что так получится?»
Ох уж эти внутренние голоса! Сколько больших и малых огорчений принесли они тем, кто имел обыкновение к ним прислушиваться, не обязательно азартным игрокам. Голос, будь то внутренний или не внутренний, служит для передачи информации. Именно поэтому для беседы, посвященной информации, подобный зачин представляется нам вполне правомочным. Да и о внутренних голосах придется еще поговорить. Но со временем. Пока наша ближайшая цель — постараться понять, что же такое информация.
20-е годы нашего века получили у физиков название эпохи бури и натиска — формировалась новая физика. Одно невероятное открытие следовало за другим. Молодой немецкий ученый Вольфганг Паули сформулировал принцип запрета, представляющий собой один из наиболее универсальных законов природы. Принцип В. Паули утверждает, что ни в какой физической системе, в частности в атоме, не может быть двух электронов, состояния которых характеризовались бы одинаковыми значениями четырех квантовых чисел.
Не станем говорить здесь о том, что такое квантовые числа и какие значения они принимают. Все это общеизвестно, так как изучается в школе. Для нас важно другое. Любой электрон, входящий в состав атома (ограничимся атомами), должен «знать», в каких состояниях находятся все остальные электроны этого атома. А как же иначе? Ведь только зная об этих состояниях, он может подчиняться принципу Паули.
Почему, начав беседу об информации, мы сразу окунулись в область квантовой физики — область, прямо скажем, не слишком наглядную? По той простой причине, что принцип Паули определяет структуру электронных оболочек атомов, стало быть, весь наблюдаемый нами, а заодно и ненаблюдаемый мир. Если бы принцип Паули когда-то нарушался, если бы из него допускались хоть малейшие исключения, мир был бы невообразимо иным. Но мир такой, каков он есть. Атом водорода — всегда атом водорода так же, как атом урана — всегда атом урана, и принцип Паули не допускает ни единого исключения.
Но коли так, то электрон действительно должен знать или, говоря точнее, иметь исчерпывающую информацию о состояниях других электронов в данном атоме и, выбирая собственное состояние, не повторять уже имеющиеся. Какой напрашивается самый простой вывод?
Существует некая физическая сущность, она и дает возможность электрону знать о состояниях других электронов.