Читаем Бесчисленное поддается подсчету. Кантор. Бесконечность в математике полностью

В этом письме Дедекинду Кантор сообщает: в 1882 году он понял, что символы , + 1, + 2, ..., + , + + 1, ... являются не чем иным, как трансфинитными числами, то есть такими, которые позволяют считать за пределами натуральных чисел. В первую очередь, он назвал их ординальными и, чтобы подчеркнуть, что они являются актуально бесконечными, символ оо, ассоциирующийся с потенциальной бесконечностью, заменил греческой буквой .

Что такое ординальные числа? Как утверждал Кантор в своей работе 1883 года, существуют два принципа порождения ординальных чисел. Первый состоит в том, что за каждым ординальным числом непосредственно идет следующее. Согласно второму принципу, если есть последовательность ординальных чисел, то и за ней сразу же идет ординальное число.

Первое ординальное число — 0, за ним идет, разумеется, 1, потом 2, 3 и так далее. Ординальные числа 0, 1,2, 3,... являются конечными, или, как говорил Кантор, числами «первого класса».

По второму принципу порождения, за последовательностью 0, 1,2, 3, 4,... стоит ординальное число: имеется в виду , первое трансфинитное ординальное число. Затем следуют + 1, + 2, + 3, ...; дальше, опять применив второй принцип порождения, мы получим новое ординальное число + , а после него — + + 1, + + 2,...

Резюмируя, ряд ординальных чисел начинается так: 0,1,2, 3,...,, + 1, + 2,..., + +1, + + 2,..., + + + 1,...,где многоточие обозначает бесконечное количество членов.

Теперь вернемся к ординалу и подумаем о множестве всех предшествующих ему чисел, то есть обо всех ординальных числах меньше . Это множество состоит из чисел 0, 1,2, 3,..., и поскольку оно счетное, Кантор утверждает, что — ординал «второго класса». У ординалов первого класса конечное количество предшественников, а у второго класса — счетное. Ординальное число, например + 1, всегда будет числом второго класса, потому что ему предшествуют числа 0,1,2,3,..., , образующие счетное множество. Ординальные числа , со + 1, + 2, ..., + + 1, + + 2,..., + + + 1,... относятся ко второму классу. Теперь обратимся к последовательности всех ординалов второго класса: согласно второму принципу порождения, сразу же за ними идет еще одно ординальное число. Обычно оно обозначается символом . Возникает вопрос: к какому классу относится ?

В статье 1883 года Кантор смог доказать, что все числа, предшествующие , то есть и первого, и второго классов, составляют несчетное множество. Следовательно, число не принадлежит ко второму классу, а является первым ординалом «третьего класса». Еще большую важность имеет тот факт, что Кантор доказал: множествам первого и второго классов соответствует кардинальное число, идущее непосредственно за кардинальным числом натуральных чисел.

Обратим внимание на изящество системы Кантора (см. рисунок): множество ординальных чисел первого класса счетное, а его кардинальное число — самое маленькое из всех бесконечных кардинальных чисел. Если мы добавим числа второго класса, то получим следующее непосредственно за ним кардинальное число. Если добавим числа третьего класса — следующее и так далее для четвертого, пятого и других классов. В 1883 году у этих кардинальных чисел еще не было отдельного названия. Кантор дал им имя в 1895 году.

В «Основаниях общей теории многообразий» математик писал, что всегда предполагал существование кардинальных чисел, больших, чем у вещественных чисел, но до того момента ему не удавалось найти никакого примера. Эта система ординалов («изящная спираль ординалов и кардиналов», по определению историка Хосе Феррейроса) позволила ему наконец доказать существование бесконечного числа уровней бесконечности.

Где в этой системе располагается кардинальное число вещественных чисел? Как мы видели, чтобы получить кардинальное число, идущее непосредственно за кардинальным числом натуральных чисел, надо прибавить первый класс ко второму. Напомним также: континуум-гипотеза гласит, что это кардинальное число вещественных чисел. Это значит, что если бы континуум-гипотеза была верной, то вся наша теория обрела бы элегантную последовательность, так как первый класс дал бы нам кардинальное число натуральных чисел, а второй класс — вещественных чисел. Сделав это открытие, Кантор понял, что континуум-гипотеза — краеугольный камень его теории, и стал одержим ее доказательством. Однако это ему не удалось, и, возможно, разочарование от неудачи стало одной из причин депрессии, поразившей его в мае 1884 года. Кантор не дожил до того момента, когда смог бы удостовериться, верна гипотеза или нет.

АТАКА ПАРАДОКСОВ

Одно из возражений, предъявленных Кантору тогда, состояло в том, что ординальных чисел просто-напросто не существует.

Каждый раз, прибавляя целый класс ординальных чисел, мы переходим к следующему кардинальному.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное