Читаем Бесчисленное поддается подсчету. Кантор. Бесконечность в математике полностью

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины. Прим. OCR: Из-за особенностей отображения иврита в выражениях алеф(X) заменен на X.

авторов Коллектив

Математика / Прочая научная литература / Образование и наука18+
<p>Gustavo Ernesto Pineiro</p><p>Наука. Величайшие теории: выпуск 30: Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.</p>

Пер. с итал. — М: Де Агостини, 2015. — 168 с.

ISSN 2409-0069

Еженедельное издание

<p>Введение</p>

Когда в звездную безлунную ночь вдали от городских огней мы любуемся восхитительным зрелищем, в глубине души рождается тревожное чувство: насколько же мала наша планета в сравнении с бесконечностью!

Бесконечность — не только сложное математическое понятие. Дуализм бесконечного — того, что буквально «не имеет конца», — и его противоположности, конечного — того, что рано или поздно заканчивается, — вероятно, сопровождал человечество с тех самых пор, когда первый Homo sapiens задумался, есть ли предел у неба, можно ли достичь горизонта, действительно ли заканчивается наша жизнь или каким-то образом непрерывно продолжается.

Но бесконечность также способна вызывать головокружение и, согласно древнегреческому философу Зенону Элейскому, парализовать всю Вселенную. В VI веке до н.э. Парменид Элейский — некоторые историки считают его отцом западной метафизики — постулировал существование бытия, главная характеристика которого сводится к тому, что оно существует. Бытие существует, оно есть.

Отталкиваясь от этого, Парменид заключил, что бытие вмещает в себя весь мир, ибо будь в нем некий участок, где его нет, это означало бы, что бытия в нем не существует. Это является терминологическим противоречием, то есть такое невозможно. Следовательно, бытие вмещает в себя всю Вселенную. Другими словами, вся она, включая нас, составляет бытие. Бытие неизменно, оно не может меняться. Предположим, что оно перешло из состояния А в состояние В. В таком случае оно перестало существовать в состоянии А, а это невозможно, потому что бытие не может прекратить свое существование. Следовательно, бытие и вся Вселенная неизменны. Это означает, что хотя, как нам кажется, мы наблюдаем изменения и движение, на самом деле их не существует. Даже времени не существует: у бытия нет ни прошлого, ни будущего — только настоящее.

Ученик Парменида Зенон выдвинул целый ряд заключений, парадоксов. Как и его учитель, он утверждал: изменений и движения не существует. То, что мы видим, — заблуждение, в которое нас вводят органы чувств, а разум и логика в состоянии это доказать.

Во всех парадоксах Зенона так или иначе присутствует понятие бесконечности. В одном из них утверждается, что если мы бросим камень в дерево, растущее в одном метре от нас, вопреки увиденному камень никогда не попадет в него, более того, он так и останется у нас в руке.

Зенон рассуждал следующим образом: чтобы долететь до дерева, камень должен преодолеть расстояние в полметра, а до этого — четверть метра, а еще раньше — восьмую часть метра, шестнадцатую и так далее. Чтобы угодить в дерево, камню придется совершить бесконечное число переходов. Но невозможно выполнить бесконечное количество движений за конечное время. Поэтому, заключает Зенон, камень никогда не коснется дерева. Эти же рассуждения справедливы и для миллиметрового масштаба, и для тысячной доли миллиметра. Действительно, получается, что камень никогда не отделится от нашей руки. Таким образом, по Зенону, бесконечное позволяет показать, что Вселенная неизменна.

В IV веке до н.э. Аристотель, заложивший основы систематического изучения логики и науки в целом, написал трактат «Физика». Среди прочих вопросов в нем исследовалось и движение тел. Но сначала Аристотелю предстояло доказать, что движение вообще существует в действительности, а значит, опровергнуть доводы Парменида и Зенона.

Если бытие не может не существовать, то как оно способно изменять свое состояние, переставать быть? Аристотель говорит, что оно есть, но иногда оно состоит в потенции, а иногда — в действии. Когда ребенок вырастает и оказывается взрослым, он не перестает быть ребенком, ребенок — это взрослый в потенции, который становится взрослым в действии. Ребенок изменился, но не прекратил существовать. Зерно — это растение в потенции, белый лист — текст в потенции и так далее. Несколько веков спустя Микеланджело Буонаротти высказал похожую мысль: в глыбе мрамора уже содержится скульптура, и нужно только отсечь все лишнее. Так Аристотель совместил представление Парменида о бытии с возможностью изменения.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное