Читаем Бесчисленное поддается подсчету. Кантор. Бесконечность в математике полностью

второго класса 122-125, 134, 135, 141

первого класса 122-125, 141

третьего класса 122-125, 141

парадокс 9, 10, 26, 30, 40, 80,

89, 96, 102, 103, 115, 141- 146, 148, 151, 154, 158, 160

Аристотеля 86

Бурали-Форти 152, 157

Галилея 39

Зенона 8

Кантора 135, 136, 152, 157

ординальных чисел 141, 144

Рассела 15590, 152, 154, 157

платонизм 158-167

последовательность 47, 51, 53, 69, 72, 84, 89, 105, 106, 107, 119, 123, 127, 140

фундаментальная 87, 88, 89

Пуанкаре, Анри 69, 116, 117

разложение на тригонометрические ряды 103, 105, 108

Рассел, Бертран 61, 94, 137, 150-154, 160

Риман, Георг Фридрих Бернхард 78, 104

Святой Августин 27

теорема Кантора 143

теория МК 158

NBG 158

теория множеств (см. также Множество)

тригонометрические ряды 87, 90, 99, 100, 103, 104, 105, 107, 108

формализм 158-159

Фреге, Готлоб 148-152, 153, 160

Френкель, Абрахам 154, 156, 160

Фурье, ряды {см. также Тригонометрические ряды) 100, 103-105, 108

Фурье, Жозеф 103

Цермело, Эрнст 154, 156, 160

число

алгебраическое 13, 37, 51—55, 57, 67, 75

вещественное 13, 48-51, 54, 55, 59, 60, 62-64, 66- 69, 71, 82-86, 96, 106, 105-109, 116, 118-119, 122, 123, 130-132, 147, 148

иррациональное 35, 48, 52, 81, 89, 106, 116, 126

квадратное 30, 37-40

рациональное 40-42, 44-49, 52-55, 67, 72, 85, 89, 94, 106, 107, 118, 119, 126, 147, 148, 151

трансфинитное 141

трансцендентное 52-55, 67-72

целое 41, 42, 44-46, 48, 49, 52, 53, 55, 56, 67, 68, 73, 75, 94, 95

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное