Читаем Бесчисленное поддается подсчету. Кантор. Бесконечность в математике полностью

Георг Кантор и Рихард Дедекинд познакомились случайно в 1872 году во время летних каникул. Несмотря на различия — Кантор был натурой страстной и импульсивной, а Дедекинд гораздо более спокойным и рассудительным,— они обнаружили много общего в своем видении математики. С этой встречи они почти десять лет вели очень интенсивную переписку, в ходе которой впервые обсудили идеи Кантора, впоследствии изложенные в его статьях. В письме от 5 января 1874 года, отправленном из Галле, Кантор спрашивал мнения Дедекинда по следующему вопросу: 

«Может ли некая поверхность (например, квадрат, включая углы) вступить в однозначное отношение с кривой (например, с отрезком прямой) таким образом, чтобы каждой точке плоскости соответствовала точка кривой, и наоборот?» 

Задача, сформулированная Кантором, была естественным продолжением идей, над которыми он работал в то время. В 1873 году он уже знал, что мощность множества вещественных чисел больше мощности натуральных чисел. Другими словами, он знал, что уровень бесконечности вещественных чисел больше, чем уровень натуральных, хотя в статье 1878 года не заявил об этом открыто.

В этой ситуации логично задаться вопросом: возможно ли множество с еще большей мощностью, чем мощность вещественных чисел? Именно об этом и думал Кантор, когда писал Дедекинду. Проследим, как вопрос о возможности множества с мощностью, большей, чем мощность вещественных чисел, приводит нас к вопросу в письме Кантора.

В предыдущей главе мы убедились, что каждой точке на числовой оси соответствует вещественное число, и наоборот: каждому вещественному числу соответствует точка на оси. Другими словами, между вещественными числами и точками на оси наблюдается взаимно однозначное соответствие (то есть два множества эквивалентны или равномощны). Когда мы говорим о мощности — это то же самое, что говорить о вещественных числах и точках на оси. Какое множество можно выдвинуть в качестве кандидата на большую мощность по сравнению со множеством точек на оси? Поскольку ось — одномерный объект, логично было бы предположить, что нам подошел бы объект с двумерной поверхностью.

Если мы думаем о множестве всех вещественных чисел, а им соответствует числовая ось, почему Кантор говорит об отрезке, то есть только о части прямой, ограниченной двумя точками? Дело в том, что можно доказать: все отрезки, вне зависимости от их длины, эквивалентны друг другу, у них одинаковая мощность и, в свою очередь, любой отрезок эквивалентен полной оси. Таким образом, при изучении мощности не имеет значения, о чем идет речь, — об отрезке или об оси.

Теперь вернемся к вопросу, сформулированному Кантором в письме от 5 января 1874 года: может ли одномерный объект (отрезок, взятый как бесконечная совокупность точек) иметь такую же мощность, что и двумерный объект (квадрат, также взятый как бесконечное множество точек), или, наоборот, мощность квадрата будет больше?

Решение задач, связанных с математической бесконечностью, является, пожалуй, одним из главных успехов нашей эпохи, которым мы можем гордиться.

Лорд Бертран Рассел, 1910 год.

В этом же письме Кантор утверждал, что, разумеется, кардинальное число точек квадрата должно превосходить кардинальное число точек отрезка. Дедекинд согласился, но Кантор также добавлял, что задача тем не менее «очень сложна».

И действительно, на пути к ее решению было много препятствий, и чтобы найти его, Кантору потребовалось три года. Он изложил его Дедекинду в письме от 20 июня 1877 года, и уже 22 июня Дедекинд отправил свое послание, в котором оспаривал аргументацию Кантора. Тот ответил двумя письмами от 25 и 29 июня. В последнем, очень характерном для Кантора, говорилось: 

«Прошу Вас извинить мое рвение, если я слишком часто злоупотребляю Вашей добротой и снисходительностью. То, что Вы сообщили, для меня настолько неожиданно и ново, что я не мог бы, так сказать, достичь некоего спокойствия духа, прежде чем получу, мой многоуважаемый друг, Ваше мнение по поводу верности [моего предположения]. Пока Вы не одобрите мои выводы, я могу лишь сказать je le vois, mais je ne le crois pas [«я это вижу, но этому не верю», франц.]. 

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное